История развития вычислительной техники — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития вычислительной техники



Одним из первых устройств (V-IV вв. до н.э.), облегчавших вычисления, можно считать абак. Это специальная доска с углублениями, вычисления на ней производились перемещением камешков или костей.

Рис. 1. Реконструкция римского абака

 

Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н.э., у японцев он назывался «серобян», у китайцев — «суанпан».

Рис. 2. Суаньпань

 

Рис. 3. Соробан

 

В Древней Руси при счете применялось устройство похожее на абак, оно называлось «русский счет». В 17 веке этот прибор приобрел вид привычных русских счетов.

В начале 17 века французский математик и физик Блез Паскаль создал первую «суммирующую машину, названную Паскалиной, которая выполняла сложение и вычитание.

Рис. 4. Суммирующая машина Паскаля

 

Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.

 

В 1670-1680 годах немецкий математик Лейбниц сконструировал счетную машину, которая выполняла все 4 арифметических действия.

 

В 1874 году петербургский инженер Однер сконструировал прибор под названием арифмометр, выполнявший довольно быстро выполнять все четыре арифметических действия над многозначными числами. В 30-е годы 20 века в нашей стране был разработан более совершенный арифмометр «Феликс». Эти счетные устройства были основным техническим средством, облегчающими труд людей, связанных с обработкой больших массивов числовой информации.



Рис. 5. Арифмометр 1932 года выпуска

 

Важным событием 19 века было изобретение английского математика Чарлза Беббиджа, который вошел в историю как создатель первой вычислительной машины — прообраза настоящих компьютеров.

Рис. 6. Часть разностной машины Чарльза Бэббиджа, собранная после смерти учёного его сыном из деталей найденных в лаборатории отца

 

В 1812 году он начал работать над своей «разностной машиной». Беббидж хотел сконструировать машину, которая не только выполняла бы вычисления, но и могла бы работать по заранее составленной программе, например, вычисляла числовое значение заданной функции. Основным элементом его машины было зубчатое колесо — для запоминания одного разряда десятичного числа. В результате можно было оперировать 18-разрядными числами. К 1822 году ученый построил небольшую действующую модель и рассчитал на ней таблицу квадратов. Совершенствуя разностную машину, Беббидж приступил в 1833 году к разработке «аналитической машины». Она должна была отличаться большей скоростью при более простой конструкции и приводиться в действие силой пара. «Аналитической машина» имела три основных блока. Первый блок для хранения чисел (память, назывался «склад»), второй блок выполняет арифметические операции («мельница»), третий блок для управления последовательностью действий машины. Также были устройства для ввода исходных данных и печати полученных результатов. Машина должна была действовать по программе, задающей последовательность выполнения операций и передачи чисел из памяти в мельницу и обратно. Математик Ада Лайвлес ( дочь поэта Байрона) разработала первые программы для машины Беббиджа. Из-за недостаточного развития технологии проект Беббиджа не был реализован, но многие изобретатели воспользовались его идеями. Так, в 1888 году американец Холлерит создал табулятор, позволяющий автоматизировать вычисления при переписи населения. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.



 

Первое поколение ЭВМ (1946 — середина 50-х годов)

В 1941 году немецкий инженер Цузе построил небольшой компьютер на основе электромеханических реле, но из-за войны его труды не были опубликованы. В 1943 году в США на одном из пред-приятий фирмы IBM Эйкен создал более мощный компьютер «Марк-1», который использовался для военных расчетов. Но электромеханические реле работали медленно и ненадежно.

Под поколением ЭВМ понимают все типы и модели ЭВМ, разработанные различными конструкторскими коллективами , но построенными на одних и тех же научных и технических принципах.

Появление электронно-вакуумной лампы привело к созданию первой вычислительной машины. В 1946 году в США появилась вычислительная машина для решения задач под названием ЭНИАК (ENIAC — Electronic Numerical Integrator and Calculator — «электронный численный интегратор и калькулятор»). Этот компьютер работал в тысячу раз быстрее, чем «Марк-1». Но большую часть времени он простаивал, т.к. для выполнения программы надо было несколько часов нужным образом подсоединять провода.

Рис. 7. ENIAC

 

Совокупность элементов, из которых состоит компьютер, называется элементной базой. Элементной базой компьютеров I поколения служат электронно-вакуумные лампы, резисторы и конденсаторы. Элементы соединялись проводами с помощью навесного монтажа. ЭВМ представляла собой множество громоздких шкафов и занимала специальный машинный зал, весила сотни тонн и расходовала сотни киловатт электроэнергии. ЭНИАК имел 20 тыс. электронных ламп. За 1 сек. Машина выполняла 300 операций умножения или 5000 операций сложения многоразрядных чисел.

В 1945 году известный американский математик Джон фон Нейман представил широкой научной общественности доклад, в котором сумел обрисовать формальную логическую организацию компьютера, отвлекшись от схем и радиоламп.

Классические принципы функциональной организации и работы компьютера:

1. Наличие основных устройств: устройство управления (УУ), арифметико-логическое (АЛУ), запоминающее устройство(ОЗУ), устройства ввода-вывода;

2. Хранение данных и команд в памяти;

3. Принцип программного управления;

4. Последовательное выполнение операций;

5. Двоичное кодирование информации (первый компьютер «Марк-1» производил вычисления в десятичной системе счисления, но такую кодировку трудно реализовать технически, и позднее от нее отказались);

6. Использование для большей надежности электронных элементов и электрических схем (вместо электромеханических реле).

 

Первая отечественная ЭВМ была создана в 1951 году под руководством академика С.А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина).

Рис. 8. МЭСМ

 

Позднее была создана БЭСМ-2 (большая электронная счетная машина). Самой мощной ЭВМ первого поколения в Европе была советская ЭВМ М-20 с быстродействием 20 тыс. оп/сек., объем оперативной памяти - 4000 машинных слов. В среднем быстродействие ЭВМ первого поколения 10-20 тыс. оп/сек. Эксплуатация ЭВМ первого поколения слишком сложна из-за частого выхода из строя: электронные лампы часто перегорали и заменять их нужно было вручную. Обслуживанием такой ЭВМ занимался целый штат инженеров. Программы для таких машин писали в машинных кодах, надо бы-ло знать все команды машины и их двоичное представление. Кроме того стоили такие компьютеры миллионы долларов.

 






Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.011 с.