История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Раздел 1. Общая характеристика жизни.

2017-10-16 1725
Раздел 1. Общая характеристика жизни. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Раздел 1. Общая характеристика жизни.

 

Определение «Жизнь» с позиции системного подхода. Критика идеалистических и метафизических представлений о сущности жизни. Фундаментальные свойства живого.

Жизнь - макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Жизнь, согласно этому определению представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной. Ф. Энгельс рассматривал жизнь не только как форму движения материи, но и показал, что эта материя белковой природы. Вслед за Энгельсом Э.Шредингер и Л.Бауэр и др. устанавливают характерные фундаментальные особенности живого:

· Упорядоченность

· Компактность

· Системность

· Обмен веществ

· Гомеостаз

· Рост и развитие

· Наследственность и изменчивость

· Дискретность и целостность

· Возбудимость и раздражимость

· Адаптивность

· Эволюционное развитие

· Онтогенез и филогенез

Критика идеалистических и метафизических представлений о сущности живого:

Познание сущности жизни является одной из основных задач современной биологии. Не следует забывать, что любые философские обобщения и выводы всегда являются отражением мировоззрения конкретного ученного. Например, К. Линней внес много нового в биологию (например, предложил сохранившеюся поныне номенклатуру), но будучи глубоко религиозным человеком, стоял на позиции метафизики и признавал сотворение видов богом. По своему мировоззрению учёные с древнейших времен разделились на метафизиков и идеалистов. Материалисты признают, что весь мир материален, природа существует объективно – независимо от сознания человека, а сознание – продукт материи (мозга) и общественного развития. В противоположность к этому идеалисту утверждают, что первичным является нематериальное начало и что весь материальный мир — порождение сознания, духа. Связь идеализма с религией очевидна. Для биолога-идеалиста возникновение жизни на Земле – это вопрос о возникновении и источнике интеллекта – «мирового разума» и т.д.

Для материалистов, жизнь всецело материальна по своей природе; не она порождается интеллектом, а наоборот, интеллект возникает и является результатом прогрессивного развития материи.

Биологические (живые) системы – особый этап развития и формы движения материи. Общая теория систем, теория биологических систем. Организация открытых биологических систем в пространстве и во времени (хронобиология).

Живые системы - особый этап развития и форма движения материи. Их основные свойства: специфический химический состав, пространственно-временная организация, обмен веществ, энергии и информации, саморегуляция и гомеостаз, самовоспроизведение, наследственность, изменчивость, развитие, раздражимость, движение. Живая система - открытая, саморегулирующаяся, самовоспроизводящаяся система. Элементами клетки как целостной системы являются молекулы, ее части и органоиды, связанные между собой; элементами организма - клетки, ткани, органы и системы органов; элементами вида - особи и популяции; элементами биосферы - все живые организмы, связанные со средой обитания и образующие биогеоценозы.

Основы концепции общей теории систем были заложены в середине прошлого столетия Людвигом фон Берталанфи. Именно он разработал общую теорию систем. Она охватывает все объекты природы и общества. Теория выделяет биологические, социальные, космические, физические, экономические и прочие системы, объединяющиеся в три крупные категории: микромир, макромир и мегамир. К микромиру относятся элементарные частицы и атомы, к макромиру — все, от молекул до океанов и материков, к мегамиру — космические объекты. Макромир включает и живые системы.

Открытые биологические системы - это совокупность постоянно взаимодействующих живых элементов, выстроенная в определенном иерархическом порядке и открытая в той или иной степени для обмена с окружающей средой. Признаки: Единый химический состав. Все природные объекты построены из одних и тех же молекул. Наследственность — свойство передавать особенности строения и функционирования из поколения в поколение. Изменчивость — свойство приобретать в течение жизни новые характеристики и навыки. Рост и развитие. Представляют собой направленное необратимое изменение. Выделяют индивидуальное и историческое развитие живых систем, называемые онтогенезом и филогенезом соответственно. Раздражимость (рефлексы, таксисы) — свойство реагировать на стимулы и изменения окружающей среды. Дискретность. Любая живая система состоит из отдельных, но взаимодействующих элементов, образующих иерархическую структуру. Саморегуляция. Существуют внутренние механизмы поддержания гомеостаза, способствующие выживаемости системы. Саморегуляция основана на принципе отрицательной обратной связи. Ритмичность. Усиление и ослабление различных процессов через равные промежутки времени.

Клеточная теория. Современное состояние клеточной теории, ее значение для биологии и медицины. Структурно-функциональная организация про- и эукариотических клеток. Общие черты и отличительные особенности.

Клеточная теория:

1) Клетка – элементарная единица всего живого.

2) Клетка образуется путем деления материнской клетки.

3) Органы и ткани состоят из клеток.

4) Клетки всех организмов гомологичны.

 

Значение клеточной теории в развитии науки велико. Клетка — это важнейшая составляющая часть всех живых организмов. Она их главный компонент в морфологическом отношении; клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки — зиготы; клетка — основа физиологических и биохимических процессов в организме. Клеточная теория позволила прийти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.

Основную массу живых существ составляют организмы, обладающие клеточной структурой.

Организмы, имеющие клеточное строение, в свою очередь делятся на две категории:

не имеющие типичного ядра - доядерные, или прокариоты. К прокариотам относятся:

· бактерии;

· синезеленые водоросли;

И обладающие типичным ядром - ядерные, или эукариоты. К эукариотам относятся: все остальные растения и животные.

 

 

Отличительные признаки про- и эукариотической клетки:

Признак Прокариоты Эукариоты
Цитоплазматическая мембрана + +
Клеточная стенка + У жив. Есть, у растений нет
Ядерная оболочка - +
Митохондрии - +
Комплекс Гольджи - +
ЭПС - +
Лизосомы - +
Мезосомы + -
Рибосомы + +
Хромосомы -(кольцевая молекула ДНК) Набор хромосом (ДНК + белок)
Способ размножения Простое бинарное деление Митоз, амитоз, мейоз

2.Закономерности существования клетки во времени. Жизненный цикл клетки, его варианты. Основное содержание и значение периодов жизненного цикла клетки.

Время существования клетки от одного деления до другого получило название клеточного цикла. Жизненный цикл клетки это более широкое понятие. Оно включает в себя не только деление клетки, но и структурно-функциональные изменения в ходе ее развития. Весь клеточный цикл состоит из подготовки к делению - интерфазы и собственно деления - митоза.

Митоз - непрямое деление ядра, универсальный способ деления любых эукариотических клеток. Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образования клеток, равноценных по объему и содержанию наследственной информации.

Интерфаза состоит из 3-х основных периодов. G1 или пресинтетический, S или синтетический и G2 или постсинтетический.

Содержание генетической информации в клетке обозначают следующим образом: n - набор хромосом, (хр.) - число хроматид в одной хромосоме, с - количество ДНК в одной хроматиде.

G1 составляет 30-40 % от времени всего клеточного цикла. В это время начинается рост клеток, увеличивается количество РНК, синтезируются белки - инициаторы синтеза ДНК. Завершается формирование ядрышка, увеличивается количество рибосом, синтезируется большое количество белка. Происходит синтез ферментов, необходимых для образования предшественников ДНК, ферментов метаболизма РНК и белка. Резко повышается активность ферментов, участвующих в энергетическом обмене. Полностью формируются одно - и двумембранные органоиды. В этот период клетка имеет диплоидное содержание хромосом, 2n, после митоза каждая хромосома состоит из одной хроматиды, 1 хр, масса ДНК соответствует диплоидному 2с.

S период составляет 50% от времени клеточного цикла. Он являет узловым. Происходит редупликация ДНК. Параллельно идет интенсивный синтез гистонов в цитоплазме и миграция их в ядро, где они связывают ДНК. В этот период удваивается число хроматид. Каждая хромосома состоит из двух сестринских хроматид, увеличивается количество ДНК в клетке.

G2 период составляет 10-20 % от времени клеточного цикла. В этот период уровень синтеза РНК достигает максимума. Синтезируются белки, которые будут использоваться клеткой после деления. Синтезируется АТФ, белки тубулины - для образования микротрубочек аппарата веретена деления, удваивается клеточный центр. Вероятно, идет выработка Митоз-стимулирующего фактора. Клетка готова к митозу.

Go период «покоя», в нем находятся клетки, перестающие делиться. В одних случаях клетки сохраняют способность к делению (например, стволовые клетки в кроветворной ткани), а в других нет, это, как правило, сопровождается дифференцировкой.

Митоз подразделятся на следующие основные фазы: профаза, метафаза, анафаза и телофаза. Деление условное, так как митоз представляет непрерывный процесс и смена фаз происходит постепенно. Единственная фаза, имеющая реальное начало - анафаза, в которой начинается расхождение хроматид. Длительность отдельных фаз различна (в среднем профаза и телофаза - 30-40', анафаза и метафаза - 7-15'). К началу митоза клетка человека содержит 46 хромосом, каждая из которых состоит из 2-х идентичных половинок - хроматид (хроматиду еще называют S-хромосомой, а хромосому, состоящую из 2-х хроматид - d-хромосомой).

Профаза. В нее входят клетки из G2 периода, с хромосомным набором 2n 2хр 4с. В начале профазы начинают выявляться тонкие профазные хромосомы. Начинается процесс конденсации хроматина. В профазе митоза исчезают ядрышки, при этом гранулярный и фибриллярный компоненты их дезинтегрируются в содержимом ядра и заполняют зоны между хромосомами. Фрагментируется ядерная оболочка. Содержимое кариоплазмы и цитоплазмы сливается. Происходит формирование аппарата веретена деления при участии микротрубочек и клеточного центра. В профазе уже репродуцировавшиеся в S-периоде центриоли начинают расходиться к противоположенным концам клетки, где будут позднее формироваться полюса веретена. К каждому полюсу отходят по двойной центриоли (диплосоме). По мере расхождения диплосом начинают формироваться микротрубочки. Одномембраннные органоиды фрагментируются и отходят к периферии, вместе с двумембранными. Количество рибосом снижается, так как синтеза белка не происходит.

Метафаза. Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Метафазные хромосомы имеют длину от 2,3 до 11 мкм и диаметр от 0,2 до 5,0 мкм. Каждая хромосома представляют собой удлиненные палочковидные структуры, имеющие - плеча, разделенные центромерой. В хромосоме имеются эу- и гетерохроматиновые участки. Последние в неделящемся ядре (вне митоза) остаются компактными. Чередование эухроматиновых и гетерохроматиновых участков используют для идентификации хромосом.

Завершается образование аппарата веретена деления. Центриоли расходятся к полюсам. Хромосомы находятся на экваторе, образуя метафазную пластинку. На этой стадии особенно хорошо видно, что хромосомы максимально конденсированы и состоят из 2-х сестринских хроматид.

Анафаза. Это кульминационная фаза митоза. Начало ее внезапное. Сестринские хроматиды удаляются к полюсам клетки. В результате этого на полюсах находится диплоидный набор 2n, хромосома состоит из 1 хроматиды, масса ДНК 2с. При нарушении этой стадии возможно возникновение различных аномалий. Существуют 2 гипотезы расхождения сестринских хроматид. Электростатическая (хроматиды одинаково заряжены поэтому отталкиваются друг от друга) и механическая. Последняя считается наиболее правильной. Выделяют как бы 2 стадии анафазы. Во время 1 происходит перемещение хроматид к полюсам, связана с укорочением прикрепленных к кинетохорам микротрубочек. Во время 2 происходит раздвижение самих полюсов, связанных с удлинением полярных микротрубочек. До сегодняшнего дня точно не установлено, под действием каких сил осуществляется передвижение хромосом к полюсам. Есть несколько версий:

1. В веретене деления есть актиносодержащиеся нити (а также другие мышечные белки), возможно, что сила эта генерируется так же как в мышечных клетках.

2. Движение хромосом обусловлено скольжением хромосомных микротрубочек по непрерывным (межполюсным) микротрубочкам с противоположной полярностью (Мак-Итош, 1969, Марголис, 1978).

3. Скорость передвижения хромосом регулируют кинетохорные микротрубочки, чтобы обеспечить упорядоченное расхождение хроматид. Скорее всего, все перечисленные механизмы осуществления математически точного распределения наследственного вещества по дочерним клеткам кооперируются.

Телофаза. Во время нее хромосомы останавливаются на полюсах, происходит их деконденсация. Они становятся слабо конденсированными, почти не заметными. Восстанавливается ядрышко, ядерная оболочка. Разрушается аппарат веретена деления. После кариокинеза происходит цитокинез. В результате образуются 2 идентичные дочерние клетки с набором 2n 1хр 2с. Дальнейшая судьба вновь образовавшихся клеток неоднозначна. Одни вновь начнут делиться митозом, другие состарятся и погибнут, так и не дав потомство, а третьи начнут делиться амитозом.

Процессы, происходящие с хромосомами при подготовке клеток к делению и в самом делении, обеспечивают самовоспроизведение и постоянство их структуры в ряду клеточных поколений. Новое поколение клеток получает одинаковую генетическую информацию в составе каждой группы сцепления. Таким образом, митотический цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Химическая организация генетического материала. Структура ДНК. Свойства и функции наследственного материала. Самовоспроизведение генетического материала. Принципы и этапы репликации ДНК. Репарация, ее виды.

ДНК – нуклеиновая кислота, она определяет синтез белков. Молекула ДНК состоит из двух спирально закрученных цепей. ДНК – полимер, мономерами которого являются нуклеотиды. Нуклеотиды ДНК – соединения, состоящие из остатков молекул фосфорной кислоты, углевода дезоксирибозы и азотистого основания. У ДНК четыре типа азотистых оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Каждая цепь ДНК – полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. Первичная структура представляет собой линейную последовательность дезоксирибонуклеотидов в одной цепочке. В такой форме в природе ДНК не существует, но именно первичная структура (последовательность нуклеотидов) определяет все ее свойства.
Вторичная структура – две полинуклеотидовые цепочки, каждая из которых закручена в спираль вправо и обе закручены вправо вокруг одной оси. Две цепочки удерживаются рядом за счет водородных связей между азотистыми основаниями разных цепочек. Азотистые основания, образующие пары по принципу Чаргаффа (а это всегда одно пуриновое и одно пиримидиновое), называются комплементарными: А = Т; G = С. Адениновый и тимидиновый соединяются двумя водородными связями, а гуаниновый и цитозиновый – тремя.

Свойства и функции генетического материала:

1. Носителем наследственной информации являются нуклеиновые кислоты (главным образом ДНК, исключение – РНК содержащие вирусы); 2. Единицей наследственности является ген, который с точки зрения молекулярной биологии определяется как участок ДНК, характеризирующийся определенной последовательностью нуклеотидов. 3. Способность ДНК, как химической основы гена, к редупликации обеспечивает передачу наследственной информации из поколения в поколение. 4. Генетическая информация о первичной структуре белка кодируется с помощью определенной последовательности нуклеотидов в цепи ДНК.

5.Биосинтез белка является процессом реализации наследственной информации. Образовавшиеся белки – ферменты вступают в цепь биохимических реакций, конечным результатом которых являются формирование фенотипического выражения признака.

Наследственный материал - компоненты клетки, структурно-функциональное единство которых обеспечивает хранение, реализацию и передачу наследственной информации при вегетативном и половом размножении.

Всеми этими свойствами обладают молекулы ДНК или реже РНК (у некоторых вирусов), в которых закодирована наследственная информация. Основными свойствами Наследственного материала являются:

2. Способность к изменению генетической информации (мутации).

3. Способность к репарации и к передаче ее от поколения к поколению (процесс восстановления природной структуры ДНК, поврежденной при нормальном биосинтезе ДНК в клетке химическими или физическими агентами).

4. Способность к реализации - синтезу белка, кодируемого геном при участии двух матричных процессов: транскрипции и трансляции.

5. Генетический материал обладает устойчивостью. Устойчивость генетического материала обеспечивается: - диплоидным набором хромосом; - двойной спиралью ДНК; - вырожденностью генетического кода; - повтором некоторых генов; - репарацией нарушенной структуры ДНК. Дискретность гена заключается в наличии субъединиц. Элементарная единица изменчивости, единица мутации названа МУТОНОМ, а единица рекомбинации - РЕКОНОМ. Минимальные размеры мутона и рекона равны 1 паре нуклеотидов и называются с а й т. Таким образом САЙТ - это структурная единица гена.

Функции наследственного материала:

1. Хранение и передача информации

2. Синтез белка, кодируемого геном при участии двух матричных процессов: транскрипции и трансляции.

3.

Способность к самокопированию (репликации) является одним из основных свойств ДНК. Это свойство обеспечивается особенностями химической организации молекулы ДНК, состоящей из двух комплементарных цепей. В процессе редупликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. Из одной двойной спирали ДНК образуется две идентичные молекулы. Такой способ редупликации называют полуконсервативным. Он осуществляется по матричному принципу. Для осуществления ауторепродукции необходимы синтетические процессы в цитоплазме, ведущие к образованию четырех типов нуклеотидов, необходимы ферменты – белки для полимеризации полинуклеотидной цепи, необходимы источники энергии и наличие других внутриклеточных условий. С помощью фермента геликазы двойная спираль ДНК расплетается. Образовавшиеся при этом одноцепочечные участки связываются специальными дестабилизирующими белками. Молекулы этих белков выстраиваются вдоль полинуклеотидных цепей, растягивая их остов и делая азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. Области расхождения полинуклеотидных цепей в зонах репликации называют репликационными вилками. В каждой такой области при участии фермента ДНК - полимеразы синтезируются ДНК двух новых дочерних молекул. В процессе синтеза репликационная вилка движется вдоль материнской спирали ДНК, захватывая все новые зоны.

Разделение спирально закрученных цепей родительской ДНК ферментом геликазой вызывает появление супервитков перед репликационной вилкой. Это объясняется тем, что при расхождении каждых 10 пар нуклеотидов, образующих один виток спирали, родительская ДНК должна совершить один полный оборот вокруг своей оси. Следовательно, для продвижения репликационной вилки вся молекула ДНК перед ней должна была бы быстро вращаться, что потребовало бы большой затраты энергии. В действительности это не наблюдается благодаря особому классу белков, называемых ДНК-топоизомеразами. Топоизомераза разрывает одну из цепей ДНК, что дает ей возможность вращаться вокруг второй цепи. Это ослабляет накопившееся напряжение в двойной спирали ДНК.

Из двух реплицируемых дочерних цепей одна реплицируется непрерывно и ее синтез идет быстрее. Эту цепь называют лидирующей. Синтез другой цепи идет медленнее, т. к. она собирается из отдельных фрагментов Оказаки. Фрагменты образуются с помощью РНК-затравки. Роль затравки для синтеза полинуклеотидных цепей ДНК в ходе репликации выполняют короткие последовательности РНК, образуемые при участии фермента РНК-праймазы. Одна из нитей ДНК разрезается на фрагменты с помощью фермента рестриктазы, вновь синтезированные отдельные фрагменты сшиваются вместе с помощью фермента лигазы. Такую цепь называют запаздывающей. Конечным результатом процесса репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК.

В принципах самоудвоения молекулы ДНК заложена основа устойчивого сохранения всей специфики генетической информации данного вида и данной особи. Это обусловлено комплементарностью при достройке молекулы ДНК. В результате вновь синтезированная молекула ДНК воспроизводит всю специфику исходной молекулы.

Фрагмент ДНК от одной точки начала репликации до другой точки образует единицу репликации - репликон. Кольцевые молекулы ДНК прокариот имеют одну точку начала репликации и представляют собой целиком отдельные репликоны. Эукариотические хромосомы содержат большое число репликонов. В связи с этим, удвоение ДНК хромосом эукариот начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.

Репарация. ДНК - это единственная макромолекула клетки, которая способна устранять повреждения, возникающие в ее структуре. Виды репарации:

1.путем замены модифицированных остатков

Замена модифицированного нуклеотида обычно происходит в четыре этапа.

Во-первых, фермент распознает этот нуклеотид и надрезает полинуклеотидную цепь вблизи него либо разрывает гликозидную связь между модифицированным основанием и дезоксирибозой.

Во-вторых, экзонуклеаза удаляет модифицированный нуклеотид и/или соседние нуклеотиды, оставляя небольшую брешь.

В-третьих, удаленный участок синтезируется заново с 3-ОН-конца с использованием в качестве матрицы противоположной цепи.

В-четвертых, концы разрыва, образовавшиеся в результате репарации, соединяются с восстановлением ковалентной целостности репарированной цепи.

2. путем прямого восстановления исходной структуры

При облучении ДНК ультрафиолетовым светом в ней образуются циклобутановые димеры между соседними пиримидиновыми основаниями. Такие соединения блокируют репликацию ДНК, и для сохранения жизнеспособности клетки их необходимо удалить. Один из способов удаления пиримидиновых димеров состоит в ферментативном превращении их в мономеры при освещении раствора видимым светом в диапазоне длин волн 300-600 нм. Такие фотореактивирующие ферменты имеются у бактерий и низших эукариотических организмов, но в клетках млекопитающих они не обнаружены. Фермент образует стабильный комплекс с пиримидиновым димером и, используя энергию поглощенного им света, разрушает димер без разрыва цепей ДНК.

Ген, его свойства. Ген как функциональная единица наследственности. Классификация генов. Особенности организации генов у прокариот и эукариот. Генетический код как способ записи наследственной информации, его свойства. Цистрон, его структура.

Ген определяется как структурная и функциональная единица наследственности живых организмов.
Свойства генов:

1. Дискретность. Само слово обозначает нечто, что имеет прерывающуюся структуру строения. В отношении генов дискретность понимают как свойство, позволяющее молекуле разделять информацию, не спутывая ее с информацией другой молекулы. Каждая группа пар нуклеотидов отделена от другой подобной группы. Это дает нам четкое и однозначное наследование тех или иных признаков.

2. Стабильность. Это свойство позволяет гену сохранять свою структуру. Таким образом, один и тот же ген передается от поколения к поколению, копируя себя при зарождении нового организма. Данное свойство позволяет сохранить принцип видовой подобности.

3. Лабильность. В противовес предыдущему свойству работает лабильность гена - способность к мутации. Данное свойство обусловлено законами эволюции и естественного отбора. Каждый организм по мере своей жизни получает определенный опыт обитания в сложившихся в природе условиях. Эта информация также попадает в гены, которые включают ее в свою структуру, приспосабливая, таким образом, весь будущий род.

4. Множественный аллелизм. Данное свойство дает внутривидовое разнообразие. Так, благодаря группам генов с разными наборами характеристик, кролик имеет разную окраску (белый, гималайский, альбинос). Разные группы крови человека также вызваны множественным аллелизмом. По большому счету, это свойство позволяет расширить палитру инструментов приспособляемости вида.

5. Специфичность. Известно, что количество генов в одной молекуле ДНК огромно. Это связано с тем, что каждый из генов кодирует свой определенный признак будущего организма. В этом, собственно, и выражается свойство специфичности. Один ген – один признак.

6. Плейотропия. Данное свойство отвечает за перенос мутации в одном гене на другие. Причем мутация влияет не только на сами гены, но и на те признаки, которые могут кодироваться. К примеру, окрас оперенья птицы может быть подвержен мутации со стороны строения клеток крыла. Таким образом, гены строения клеток влияют и на результаты получившегося цвета крыльев.

7. Экспрессивность. Это свойство отражает степень выраженности того или иного гена в одном признаке. Оно необходимо для гибкости в передаче наследственной информации. Пенетрантность отражает показатель того, насколько часто признак встречается в фенотипе (стадии развития в пределах одного организма).

8. Амплификация. Отвечает за степень увеличения количества копий одного гена. Как правило, это свойство проявляется в ответ на селекционные действия человека (при создании новых видов). В природе амплификация встречается редко.
Классификация генов:

1.Структурные:

Гены I, кодирующие структуру белков (полипептидов)

Гены II — структуру рРНК, тРНК.

2. Регуляторные:

Гены – регуляторы последовательности: промотор, оператор, терминатор, энхансер, элемент перед промотором, функции которых выявляются при взаимодействии со специфическими регуляторными белками.

3. Структурные гены:

Гены «домашнего хозяйства», продукты экспрессии которых необходимы постоянно для жизнедеятельности любого типа клеток (гены рРНК, тРНК, гены гистонов, гены тубулинов и др.), Гены «роскоши» — тканеспецифические гены, обеспечивающие специализированные функции клеток, т. е. гены функционально активные только в определенных типах клеток и на определенных стадиях развития организма (Глобин, инсулин, иммуноглобулин)

Гены-модуляторы.

Цистрон – участок ДНК, ответственный за синтез определенного вида белка. Для эукариот термин «цистрон» не применяется. Для эукариот понятия «ген» и «цистрон» в настоящее время являются синонимами. Именно цистрон определяет последовательность аминокислот в каждом специфическом белке.

Структура цистрона (гена):

Цистрон подразделяется:

1. Реконы - предельно малые в линейном измерении единицы способные к рекомбинации при кроссинговере.

2. Мутоны - наименьшие части гена, способные к изменению (мутированию). Размеры рекона и мутона могут равняться одной или нескольким парам нуклеотидов, цистрона - сотням и тысячам нуклеотидов.

 

 

Генные

Эффект проявления:

- Аминокислота заменяется на стоп-кодон – НОНСЕНС

- Аминокислота заменяется на другую аминокислоту – МИССЕНС

- Одна и та же аминокислота заменяется на другую, но кодирующую тот же триплет – САММИССЕНС

Со сдвигом рамки:

- Потеря участка хромосомы – ДЕЛЕЦИЯ

- Удвоение участка хромосомы – ДУПЛИКАЦИЯ

- Вставка участка хромосомы – ВСТАВКА

Без сдвига рамки:

- Поворот участка хромосомы на 180 градусов – ИНВЕРСИЯ

 

Хромосомные

Внутрихромосомные

Межхромосомные

Обмен участками НЕ гомологичных хромосом – РЕЦИПРОКНЫЕ

Обмен участками гомологичных хромосом – НЕ РЕЦИПРОКНЫЕ

Слияние в центромерах – РОБЕРТСОНОВСКИЕ

 

Геномные

Полиплоидия – увеличение количества хромосом в следующих поколениях В КРАТНОЕ ЧИСЛО РАЗ.

Анеуплоидия – изменение количества хромосом в НЕКРАТНОЕ ЧСИЛО РАЗ.

Моносомия – отсутствие одной хромосомы

Трисомия – появление дополнительной хромосомы

Полисомия – появление 2 и более дополнительных хромосом

Нулесомия – отсутствие 1 пары хромосом

 

Хромосомы – структурные компоненты ядра. Структурная организация хроматина. Морфология хромосом. Нуклеосомная модель строения хромосом. Этапы упаковки хромасом. Понятие о кариотипе. Правила хромосомных наборов.

Хромосома – постоянный компонент ядра, отличающийся особой структурой, индивидуальностью, функцией и способностью к самовоспроизведению, что обеспечивает их преемственность, а тем самым и передачу наследственной информации от одного поколения растительных и животных организмов к другому.

Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом:

равноплечие (метацентрические), когда Центромера расположена посередине, а плечи примерно равной длины;

неравноплечие (субметацентрические), когда Центромера смещена от середины хромосомы, а плечи неравной длины;

палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое.

Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Структурная организация хроматина. Сохраняя преемственность в ряду клеточных поколений, хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом.

Интерфазную и метафазную формы существования хроматина расценивают как два полярных варианта его структурной организации, связанных в митотическом цикле взаимопереходами. В пользу такой оценки свидетельствуют данные электронной микроскопии о том, что в основе как интерфазной, так и метафазной формы лежит одна и та же элементарная нитчатая структура. В процессе электронно-микроскопических и физико-химических исследований в составе интерфазного хроматина и метафазных хромосом были выявлены нити (фибриллы) диаметром 3,0—5,0, 10, 20—30 нм. Диаметр двойной спирали ДНК составляет примерно 2 нм, диаметр нитчатой структуры интерфазного хроматина равен 100—200, а диаметр одной из сестринских хроматид метафазной хромосомы — 500— 600 нм.

Этапы упаковки хромосом. Упаковка молекулы ДНК в хромосоме имеет 4 уровня (см. рисунок):
1. нуклеосомы, нуклеосомная нить
2. соленоидная спираль
3. петли
4. розетки

Двойная спираль ДНК «намотанная» вокруг комплекса из 4-х пар белковых молекул образует «бусину» - нуклеосому. Нуклеосомы, связанные между собой участками молекулы ДНК, составляют нить, которая в свою очередь закручена в форме соленоида (это по одной из существующих моделей), один виток — 6 нуклеосом. Эта структура на следующем уровне упаковки образует петли. В таком виде, в форме петель, ДНК присутствует в ядре клетки на этапе роста клетки, синтеза её компонентов, в т. ч. удвоения ДНК.
Однако на разных стадиях жизни клетки конденсация хроматина разная. В период роста клетки хроматин в ядре не конденсирован, компактность его расположения при этом отличается для разных участков хромосомы.
Когда же происходит процесс деления клетки, хроматин всё более уплотняется и петли, о которых говорилось выше, образуют «розетки», плотно уложенные одна к другой (тоже по одной из существующих моделей), по 18 петель на кольцо. В результате этого хроматин принимает вид конденсированных хромосом.

Кариотип — совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного организма.

Общий набор хромосом – это кариотип, является генетическим критерием вида. В нём выделяют:

· Аутосомы – соматические хромосомы;

· Половые хромосомы.

Всего у человека 46 хромосом. У женщин 44 Аутосомы + ХХ половые. У мужчин 44 Аутосомы + ХУ половые. В сперматозоиде 22 аутосомы + Х или У половые хромосомы.

Правило кариотипа:

· Постоянство числа и форм;

· Правило парности;

· Правило индивидуальности хромосом;

· Правило непрерывности хромосом.

Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получать. Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их располагают в виде идиограммы.

Митотический (пролиферативный) цикл клетки. Фазы митотического цикла, их характеристика и значение. Главные механизмы пролиферативного цикла. Регуляция митоза. Амитоз. Эндомитоз, политения, их значение.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1--1,5 ч, 02-периода интерфазы --2--5 ч, S-периода интерфазы -- 6--10 ч.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и на<


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.112 с.