Схемы формирования абсолютного значения — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Схемы формирования абсолютного значения

2017-09-26 871
Схемы формирования абсолютного значения 0.00 из 5.00 0 оценок
Заказать работу

Преобразователь двухполярного сигнала. Преобразователь (рис. 15.7) выполняет функции двухполупериодного выпрямителя. Он может работать с сигналами, амплитуда которых меньше 5 В. Если увеличить номиналы источников питания, то амплитуду вход­ного сигнала также можно увеличить. Для выравнивания положи­тельных и отрицательных полуволн на выходе необходимо подбирать сопротивление резистора R4. Преобразователь работает в ши­роком диапазоне частот.

Рис. 15.7

 

Формирователь абсолютного значения. Двухполярный входной сигнал (рис. 15.8,с) преобразует­ся в однополярный с помощью двух диодов, которые объединя­ют входы ОУ в дифференциальном включении. Эти диоды управляют подведением входного сигнала ко входам ОУ в зависимости от его полярности. При этом на вы­ходе схемы присутствуют только отрицательные сигналы. В схеме линейная зависимость выходного сигнала от входного соблюдается для сигналов больше 1 В. Для управляющих напряжений Е семей­ство характеристик UBЫХ(UBX) приведено на риc. 15.8, б.

Рис 15.8

 

Преобразователь на двух ОУ. Преобразователь абсолютных значений (рис. 15.9, а) построен на двух схемах, передаточные ха­рактеристики которых близки к характеристикам идеального диода. Коэффициент передачи схем определяется отношением сопротивле­ний резисторов R2 и R3. Управляющее напряжение позволяет сдви­гать правую ветвь передаточной характеристики. При E>0 возника­ет зона ограничения входного сигнала. Например, для Е=1 В входной сигнал проходит на выход, если он превышает значение 2 В. На рис. 15.9, б приведено семейство передаточных характеристик!

Рис. 15.9

Рис. 15.10

 

Компенсационный преобразователь абсолютных значений. Фор­мирование абсолютного значения входного сигнала в схеме (рис. 15.10, а) осуществляется при взаимодействии входного и вы­ходного сигналов. Если на входе присутствует сигнал положитель­ной полярности, то выходной сигнал формируется за счет прохож­дения входного сигнала по цепи RlR4. Для входного сигнала от­рицательной полярности на выходе интегральной микросхемы фор­мируется сигнал положительной полярности, который проходит че­рез диод VD1 на резисторы R4, R2, R1. В результате на выходе образуется разностный сигнал. Поскольку сопротивление резисто­ра R1 в два раза больше сопротивления резистора R4, сигнал ми­кросхемы на выходе является преобладающим. С помощью рези­стора R2 можно балансировать схему. На рис. 15.10, б приведено семейство переходных характеристик преобразователя.

Детекторный преобразователь. Формирователь абсолютного зна­чения входного сигнала (рис. 15.11, а) построен по принципу двух-полупериодного выпрямления на диодах VD1 и VD2. Положитель­ное значение выходного сигнала ОУ DA1 проходит через диод и по­ступает на неинвертирующий вход ОУ DA2. На выходе будет по­ложительный сигнал. Отрицательное значение выходного сигнала ОУ DA1 проходит на инвертирующий вход ОУ DA2. На выходе также будет положительный сигнал. Для положительного входного сигнала коэффициент передачи равен K+ = R6R4/R5R1. а для отри­цательного —

Рис. 15.11

Рис. 15.12

 

На рис. 15.11, б приведено семейство передаточных характеристик преобразователя.

Параллельный преобразователь. Схема получения абсолютного значения входного сигнала (рис. 15.12, а) имеет большое входное сопротивление. Здесь входной сигнал действует на две микросхемы одновременно. Для положительных значений входного сигнала ко­эффициент усиления схемы равен единице, а для отрицательных — зависит от K_=1 — (R4R2/R3R1). При R4R2/R3R1 = 2 получим точное совпадение по амплитуде сигналов на выходе. Для управления пе­редаточной характеристикой схемы можно менять напряжение Е. Можно ввести дополнительное управление характеристикой, если менять напряжение на инвертирующем входе ОУ DA2. В приведен­ной схеме можно использовать ОУ различных типов. На рис. 15.12,6 представлено семейство передаточных характеристик преобразова­теля.

Рис. 15.13

Рис. 15.14

Прицезнонный детектор. Преобразователь (рис. 15.13, а) пост­роен на двух ОУ. Двухполупериодное выпрямление реализуется пу­тем переключения диодов. Знак коэффициента усиления меняется при смене знака входного сигнала.-Полярность выходного сигнала положительная. Положительный входной сигнал, вызывает появле­ние положительного напряжения на выходе DA1. Диод VD1 закрывается, a VD2 открывается. Усилитель DA2 обеспечивает необходи­мый коэффициент усиления с помощью делителей Rl, R2 и R3, R4. При отрицательной полярности входного сигнала диод VD1 откры­вается, a VD2 закрывается. Отрицательная полуволна проходит на инвертирующий вход усилителя DA2.

При коэффициенте усиления K сопротивление резистора равно R1 = R2(K+1)/(К-1) или R1=R3R2/(R3+R2). Рис. 15.13, б иллю­стрирует передаточную характеристику схемы.

Параллельный преобразователь абсолютного значения. Преоб­разователь (рис. 15.14) состоит из инвертора, построенного на ОУ DA1, и двух детекторов на ОУ DA2 и DA3. С помощью потенцио­метра R4 осуществляется установка равенства передачи положи­тельных и отрицательных полярностей входного сигнала. В ОУ DA2 и DA3 постоянное напряжение на выходе можно скомпенси­ровать потенциометрами R10 и R17. В настроенной схеме динами­ческий диапазон входного сигнала с частотами от 0 до 3 кГц лежит в интервале от 0,4 мВ до 5,5 В с нелинейностью менее 0,2 %. Ча­стотный диапазон работы преобразователя ограничен применяемы­ми ОУ. Применение вместо интегральной микросхемы К153УД1 ми­кросхем К140УД1Б и К140УД7 позволит расширить частотный диа­пазон до 10 кГц. Для устранения возбуждения в микросхемах К153УД1 необходимо применить корректирующие элементы: между выводами 5, 6 конденсатор С = 56 пФ и выводами 1, 5 резистор R=1,5 кОм и конденсатор С = 300 пФ.

Рис. 15.15 Рис. 15.16

 

Последовательная схема преобразователя. На ОУ DA1 в соста­ве преобразователя (рис. 15.15) построен двухполупериодный де­тектор. В этой микросхеме происходит разделение полярностей входного сигнала. Сигнал с отрицательной полярностью проходит на инвертирующий вход усилителя DA2. На выходе этого усилите­ля сигналы объединяются на резисторе R11. С помощью резисто­ра R11 добиваются равенства частей выходного сигнала, соответ­ствующих положительной и отрицательной полярностям входного сигнала. Порог разделения входного сигнала можно регулировать в ОУ DA1 с помощью резистора R6. Входной сигнал с частотой от О до 5 кГц и с амплитудой от 1 мВ до С В передается на выход с нелинейностью менее 0,2 %.

 

УМНОЖИТЕЛИ

 

Устройство возведения сигнала в квадрат с фазовраща­телем. Устройство (рис. 15.1G), моделирующее возведение сигнала в квадрат, состоит из трех полевых транзисторов. Первый транзи­стор выполняет функции повторителя сигнала. В истоке и стоке этого транзистора присутствуют одинаковые по амплитуде противо­фазные сигналы. Эти сигналы подаются в затворы двух других транзисторов, имеющих общую нагрузку, на которой и выделяется квадратичный сигнал. Для получения удовлетворительного преобра­зования сигнала необходимо подобрать транзисторы с идентичными характеристиками. С помощью напряжения смещения, поступающе­го на VT2 и VT3 с потенциометров R8 и R9 от источника 5 В, ра­бочие точки транзисторов VT2 и VT3 устанавливаются на началь­ном участке входной характеристики.

Параллельная схема возведения сигнала в квадрат. Схема (рис. 15.17) использует противофазные сигналы. Полевые транзи­сторы должны быть подобраны по основным параметрам (крутиз­на и напряжение отсечки). Для подстройки режимов работы тран­зисторов необходимо подстроить резисторы R2 и R4. Частотный диапазон работы от 100 Гц до 500 кГц. Амплитуда входного сигна­ла 0,5 В.

Мостовая схема возведения сигнала в квадрат. Схема получе­ния квадрата входного сигнала (рис. 15.18) построена на полевых транзисторах VT3 и VT4 Управления полевыми транзисторами осу­ществляется двумя противофазными сигналами, пгпучаемими на коллекторах VT1 и VT2. С помощью резисторов R2 и R7 устанав­ливаются напряжения на коллекторах транзисторов VT1 и VT2 Это необходимо в случае различия порогов отсечки. Для устране­ния несовпадения крутизны у транзисторов следует подобрать со­противление резистора R6. Устройство работает при входных сигна­лах до 5 В. При изменении входного сигнала от 1 до 5 В на выхо­де возникает составляющая первой гармоники, приблизительно рав­ная 10 % от выходного сигнала.

 

Рис. 15.17

 

Дифференциальная схема квадратора. Возведение сигнала в квадрат (рис. 15 19) осуществляется с помощью полевых транзи­сторов. Интегральная микросхема типа К122УД1 служит для уста­новки рабочего режима полевых транзисторов и усиления сигнала. Из-за разброса напряжений отсечки полевых транзисторов им тре­буются разные положительные потенциалы на затворе. Регулиров­ка этих напряжений осуществляется резистором R2, а общий уро­вень сигнала для обоих транзисторов регулируется резистором R3.

Рис. 15.18 Рис. 15.19 Рис. 15.20

 

Уменьшение разброса транзисторов по крутизне достигается изме­нением амплитуды выходного сигнала микросхемы DA с помощью резистора R8. Максимальная амплитуда входного сигнала 50 мВ, а выходная амплитуда более 150 мВ. Максимальная частота вход­ного сигнала около 100 кГц.

Квадратичный преобразователь. Преобразователь (рис. 15.20) использует ОС с кусочно-линейной аппроксимацией. Погрешность преобразования меньше ±1 %. Транзисторы выполняют функции пороговых элементов, которые при открывании подключают на вход ОУ токозадающие резисторы. Пороги открывания транзисто­ров устанавливаются с помощью делителя R6R10.

Квадратор. Приведенная схема (рис. 15.21) имеет квадратич­ную передаточную характеристику для входного сигнала с ампли­тудой до 5 В. Точность возведения сигнала в квадрат не хуже 3 %. Частота входного сигнала лежит в диапазоне от 100 Гц до 50 кГц. Для балансировки микросхемы DA1 используются два по­тенциометра. Потенциометр R14 устанавливает равные между со­бой напряжения на выводах 6 и 8 Регулировка уровня этих напря­жений осуществляется с помощью потенциометра R16.

При работе с малыми амплитудами входного сигнала следует подбирать резисторы, подключаемые к выводам 5, 9 и 3, 11. К этим входам микросхемы должны быть подключены равные со­противления. Подбором этих резисторов можно также скомпенси­ровать напряжение смещения нуля микросхемы.

Выходной дифференциальный сигнал преобразователя (DA1) поступает на ОУ DA2. С помощью ОУ DA2 значительно ослабля­ются синфазные помехи, которые приходят по цепям цитания на выход интегральной Микросхемы DAI Синфазные помехи могут возникнуть и в самой микросхеме, если она не сбалансирована. С помощью потенциометра R19 устанавливается нулевой сигнал на выходе при отсутствии входного сигнала. Для стабилизации ОУ К140УД5 к выводу 4 подключается корректирующая емкость 510 пФ.

Умножитель. Умножитель (рис. 15 22) собран на девяти микро­схемах типа К.159НТ1, каждая из которых представляет собой два выполненных по единой технологии и близких по параметрам тран­зистора. Операция перемножения осуществляется в микросхемах DA4 и DA5. На выходе перемножителя стоят два повторителя с общим источником тока в эмиттерных цепях. Этот каскад снижает уровень синфазных помех, которые проходят на выход перемножи­теля по цепям питания. На входе схемы помещен усилитель с кол­лекторной нелинейной нагрузкой, имеющей логарифмическую харак­теристику. Сигнал со Входа 1 проходит через этот каскад, который выполнен на DA1 и DA2, что позволяет расширить динамический диапазон входных сигналов. Микросхемы DA3 и DA7 выполняют функции термокомпенсированных генераторов тока. Поскольку в логарифмическом и перемножающем каскадах транзисторы подоб­раны по параметрам, то точность перемножения двух сигналов с частотами от 0,1 Гц до 100 кГц не хуже 1 %. Амплитуды входных сигналов могут меняться от 1 мВ до 1 В.

Рис. 15.21

Рис. 15.22

 

 

Рис. 15.23

Перемножитель. Перемножитель сигналов, достроенный На ин­тегральной микросхеме К.140МА1 (рис. 15.23, с) позволяет работать на частотах до 15 МГц. С применением на входе устройства мик­росхем К140УД1 для согласования по постоянной составляющей полоса частот уменьшается до 1 МГц. Поскольку по опорному сиг­налу интегральная микросхема DA4 имеет экспоненциальную зави­симость коэффициента передачи, то на выводы 5 и 9 этой микросхе­мы подается сигнал, предварительно логарифмируемый микросхемой DA3. Операция логарифмирования микросхемой осуществляет­ся на нелинейной нагрузке, выполненной в виде транзисторов VT1 и VT2 в диодном включении.

В микросхеме DA3 для увеличения динамического диапазона по управляющему входу разность потенциалов между входами опорного сигнала подбирается в процессе настройки с помощью ре­зистора R10. Это напряжение должно лежать в пределах 100 — 200 мВ. Для получения идентичности транзисторы желательно применять подобранными или использовать микросхему К.101КТ1.

Выходные парафазные сигналы микросхемы DA4 объединяются через микросхему DA5. Для входных сигналов от — 0,5 до +1,5 В погрешность составляет менее 0,5 %. Минимальный сигнал, при ко­тором схема удовлетворительно работает, равен 5 мВ. Работа схе­мы проиллюстрирована графика­ми рис. 15.23,6.

Извлечение корня. Извлече­ние корня из входного сигнала в схеме (рис. 1524) осуществляет­ся за счет сравнения двух сигна­лов, входного сигнала и сигнала выхода ОУ DA1. На выходе этого ОУ формируется квадратичный сигнал. Квадрат напряжения на выходе микросхемы образуется за счет нелинейной ОС, напряжение которой снимается с диода VD1 Вольт-амперная характеристика диода не является идеально квадратичной. Регулировка формы характеристики схемы на ОУ DAI под «квадратичность> осуществляется резисторами R3 и R5. При точной настройке погрешность схемы около 1% для входного сигнала от 0 до 10 В.

 

Рис. 15.24

АППРОКСИМАТОРЫ

 

Однополярный преобразователь. Преобразование входного сигнала в схеме (рис. 15.25, о) осуществляется за счет поочередно­го подключения резистивных делителей к входу ОУ. Дискретно меняется коэффициент усиления усилителя за счет открывания оче­редного диода. В первоначальном состоянии диоды закрыты. По­роговые уровни устанавливаются с помощью потенциометров R5R8. С превышением входным сигналом порога диод открывается и на вход ОУ поступает потенциал, определяемый резисторами RlR4. Все потенциалы на входе усилителя суммируются. Про­цесс суммирования входных токов проиллюстрирован графиками на рис. 15.25, б.

Двухполярный преобразователь. Схема (рис. 15.26) состоит из двух симметричных частей: верхняя часть осуществляет преобразо-вание положительного значения входного сигнала, нижняя часть — отрицательного значения. В зависимости от характера установки движков потенциометров R7R11 схема может преобразовывать входной сигнал по Любому закону. Частным случаем может быть квадратичное преобразование. В т. 1 — 4 устанавливаются порого­вые уровни, равные 1; 2; 3; 4 В. Точность установки может быть 10%. Сопротивления должны быть установлены потенциометрами R 7R11 как можно точнее, поскольку это определяет правиль­ность преобразования входного сигнала. Чтобы устранить влияние порога открывания диода VD2, который должен проводить с нуле­вого входного сигнала, в цепь отрицательной обратной связи ОУ DA1 включен диод VD1. Кроме того, этот диод осуществляет ча­стичную термокомпенсацию всех остальных диодов. В схеме ис­пользуются диоды матриц КД908А или КД917А.

Диодный преобразователь. Передаточная функция преобразо­вателя (рис. 15.27, а) формируется нелинейной ООС. С увеличе­нием амплитуды выходного сигнала происходит поочередное включение диодов. С переходом диода в проводящее состояние умень­шается общее сопротивление ООС. В зависимости от сопротивле­ния резистора R1 наклон передаточной характеристики можно ме­нять в широких пределах.

На схеме рис. 15.27, б нелинейное сопротивление ОС эквива­лентно одному диоду с растянутой вольт-амперной характеристи­кой. Характеристики обеих схем проиллюстрированы на графиках.

Рис. 15.25

Рис. 15.26

 

Пороговый преобразователь. Преобразователь (рис. 15 28, а) имеет сложную ООС. При малых сигналах в цепи ОС включен ре­зистор R5. По мере увеличения входного сигнала в цепь ОС включается резистор R4 при открывании последовательно включен­ного с этим резистором диода. Включение резистора R3 происходит при больших выходных сигналах при1 открывании двух последова­тельно с ним включенных диодов. В последнюю очередь включается резистор R2. Как видно из графика рис. 15.286, крутизна переда­точной характеристики может легко корректироваться путем изме­нения сопротивления резистора R1.

 

Рис. 15.27

Рис. 15.28

 

Преобразователь с диодной регулировкой усиления. Коэффици­ент усиления схемы (рис. 15.29, а) зависит от прямого сопротивле­ния диода VD1, которое нелинейно меняется от приложенного на­пряжения. На рис. 15.29, б приведено семейство передаточных ха­рактеристик схемы в зависимости от сопротивления резистора R5. Меняя сопротивление резистора R5, можно получить передаточные характеристики разнообразной форма. Возможности этой схемы расширятся, если применить два и более последовательно включен­ных диодов. Характеристика схемы с двумя дирдами также приве­дена на рис. 15 28, б.

Нелинейный преобразователь на ОУ. В преобразователе (рис. 15.30) используется принцип изменения коэффициента уси­ления ОУ DA1 в зависимости от амплитуды входного сигнала. Ко-эффициент усиления меняется с изменением эквивалентного сопро­тивления в т. 5 K=2R3/R4. Сопротивление резистора R4 меняется за счет подключения резисторов R5R8. Эти резисторы включают­ся после того, как сигнал в т. 5 превысит пороговые уровни в т. 14. Эти уровни можно выбирать любыми в зависимости от формы передаточной функции схемы. Для квадратичной передаточной функции в т. 1 — 4 можно принять пороги 0,1; 0,2; 0,3; 0,4 В. Ког­да входной сигнал превысит уровень 0,1 В, параллельно резисто­ру R4 подключится резистор R5. Коэффициент усиления DAI уве­личится. При превышении входным сигналом уровня 0,2 В допол­нительно подключится и резистор R6. Таким- способом можно смоделировать любую возрастающую передаточную функцию. Чис­ло пороговых ОУ можно выбрать сколь угодно большим и с лю­бой дискретностью пороговых уровней.

Рис. 15.29

Рис. 15.30

 

Рис. 15.31

 

Преобразователь формы сигнала. Устройство (рис. 15.31, а) преобразует сигнал треугольной формы в синосоидальную. В каче­стве преобразователя используется переменное сопротивление поле­вого транзистора. При малых напряжениях на входе ОУ коэффици; ент передачи K=R4/R птпри R пт — lfs, т. е. JK — SRt, где Ra т и S — сопротивление и крутизна полевого транзистора при напряжении на затворе, близком к нулю. С увеличением входного напряжения со­противление полевого транзистора увеличивается. Коэффициент передачи ОУ уменьшается. В результате на выходе появляется сиг­нал не с острой вершиной, а с гладкой. Степень приближения плав­ного выходного сигнала к гармоническому виду зависит от нели­нейности напряжения на затворе, а также от сопротивления рези­стора R1. Сопротивление резистора R4, при котором на выходе по­лучается гармонический сигнал, зависит от крутизны полевого транзистора. Оптимальный режим достигается при сопротивлении ре­зистора около 200 Ом. При увеличении сопротивления резистора R4 передаточная характеристика станет выпуклее. При уменьшении сопротивления резистора характеристика будет более пологой (рис. 15.31,6).

ФАЗОСДВИТАЮЩИЕ СХЕМЫ

Фазовое звено. Фазосдвигающее звено (рис. 15.32, а) рабо­тает в диапазоне частот от 0 до 20 кГц. Звено имеет пере­даточную функцию UВых/Uвх=(1 — jwR3C1)/(l+ jwR3C1). ф= = 1/2 arctgR3C1. а звено (рис. 15.32, б) — передаточную фазовую функцию tgф== — 2wR3C1/l — w2(R3C1)2. Коэффициент усиления на всех частотах равен единице. Фаза выходного сигнала зависит от частоты. Если соединить последовательно три таких звена, то об­щее усиление не меняется, а фазовый сдвиг меняется в пределах от 0 до 540°. В первом звене происходит отставание выходного сигнала относительно входного, а для второго звена выходной сиг­нал опережает входной. Зависимости фазового угла от емкости фа-зосдвигающего конденсатора приведены на рис. 15.32, в.

Транзисторное фазовое звено. Фазосдвигающая цепочка (рис. 15.33, о) построена на основе интегратора, выполненного на транзисторе. Постоянная времени цепочки определяется элемента­ми R1, R2, R3, С2 и коэффициентом усиления схемы. Усиление оп­ределяется отношением сопротивлений резисторов K=R4/R5. Фазо­вая характеристика проиллюстрирована на графике рис. 15.33, б.

Фазовращатель на 130°. Фазовращатель (рис. 1534, о) по­зволяет изменять фазу входного сигнала в пределах от 0 до 180° при неизменной амплитуде выходного сигнала. Изменение фазы сигнала осуществляется на элементах R7, СЗ и R8, С4. Цепь R7, СЗ обеспечивает отставание по фазе от 0 до 90°, а цепь R8, С4 — опе­режение от 0 до 90°. При R7=R8=R и СЗ=С4 = С фаза выходного сигнала определяется выражением ф=arctg[2wRC/(l — w2R2С2) ].

Рис. 15.32

Рис. 15.33

 

Эмиттерные повторители имеют большое входное сопротивление, в результате исключается шунтирование конденсаторов СЗ и С4 при малых сопротивлениях резисторов R7 и R8. На рис. 15 34, б приведена зависимость угла поворота от сопротивления R7=R8.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.