Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Топ:
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Интересное:
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Средства для ингаляционного наркоза: Наркоз наступает в результате вдыхания (ингаляции) средств, которое осуществляют или с помощью маски...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Дисциплины:
2017-08-11 | 554 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Землетрясение тектонического типа, т.е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов, со вспарываением каждого из них не только с высвобождением, но и перераспределением энергии в некотором объеме. Когда мы говорим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока и прочность породного массива, включающего помимо материала горных пород еще и структурные ослабленные
зоны. Благодаря последним, прочность породного массива существенно ниже, чем прочность собственно пород.
Скорость распространения разрывов составляет несколько км/сек и этот процесс разрушения охватывает некоторый объем пород, носящий название очага землетрясения. Гипоцентром называется центр очага,условно точечный источник коротко периодныхколебаний (рис. 18.1.1).
Рис. 18.1.1. Очаг землетрясения и распространения сотрясений в объеме породы: 1 – область очага или гипоцентр, 2 – проекция гипоцентра на поверхность Земли – эпицентр. Линии изосейст на поверхности – линии равных сотрясений в баллах
В большинстве случаев, хотя и не всегда, разрывы имеют сдвиговую природу и очаг землетрясения охватывает определенный объем вокруг него. Сейсмология изучает
упругие волны распространяющиеся динамически в частотном диапазоне 10-3 –102 Гц со скоростями в 2-5 км/сек. Проекция гипоцентра на земную поверхность называется эпицентром землетрясения.Интенсивность землетрясения эпицентра изображаетсялиниями равной интенсивности землетрясений - изосейстами. Область максимальных баллов вокруг эпицентра носит название плейстосейстовой области.
Основному подземному сейсмическому удару – землетрясению, обычно предшествуют землетрясения или форшоки, свидетельствующие о критическом нарастании напряжений в горных породах. После главного сейсмического удара обычно наблюдаются еще сейсмические толчки, но более слабые, чем главный удар. Они называются афтершоками и свидетельствуют о процессе разрядки напряжений при образовании новых разрывов в толще пород.
По глубине гипоцентров (фокусов) землетрясения подразделяются на 3 группы: 1) мелкофокусные 0-60 км; 2) среднефокусные – 60-150 км; 3) глубокофокусные 150-700 км. Но чаще всего гипоцентры землетрясений сосредоточены в верхней части земной коры на глубинах в 10-30 км, где кора характеризуется наибольшей жесткостью и хрупкостью.
|
Быстрые, хотя и неравномерные смещения масс горных пород вдоль плоскости разрыва вызывают деформационные волны – упругие колебания в толще пород, которые,
распространяясь во все стороны и, достигая поверхности Земли, производят на ней основную разрушающую работу. В главе II уже говорилось о главных типах объемных и поверхностных сейсмических волн. К первым относятся продольные – Р (более скоростные) и поперечные – S (менее скоростные) волны (см. рис.2.2.2). Ко вторым – волны Лява - L и Рэлея – R. Волны Р представляют собой чередование сжатия и растяжения и способны проходить через твердые, жидкие и газообразные вещества, в то время как волны S при своем распространении сдвигают частицы вещества под прямым углом к направлению своего пути.
Скорость продольных волн:
V р = | λ + 2 | µ | |
ρ | |||
Где µ - модуль сдвига; ρ - плотность среды, в которой распространяется волна; λ - коэффициент, связанный с модулем всестороннего сжатия К соотношением
λ = К −23µ
Скорость поперечных волн:
Vs = µ
ρ
т.к. модуль сдвига µ в жидкости и газе равен 0, то поперечные волны не проходят через жидкости и газы.
Поверхностные волны подобны водной ряби на озере. Волны Лява заставляют колебаться частицы пород в горизонтальной плоскости параллельно земной поверхности, под прямым углом к направлению своего распространения. А волны Рэлея, скорость которых меньше, чем волн Лява, возникают на границе раздела двух сред и, воздействуя на частицы, заставляют их двигаться по вертикали и горизонтали в вертикальной плоскости, ориентированной по направлению распространения волн.
Поверхностные волны распространяются медленнее, чем объемные, и довольно быстро затухают как на поверхности, так и с глубиной. Волны Р, достигая поверхности Земли, могут передаваться в атмосферу в виде звуковых волн на частотах более 15 Гц. Этим объясняются «страшный гул», иногда слышимый людьми во время землетрясений.
|
Сейсмические волны, вызываемые землетрясениями, можно зарегистрировать, используя т.н. сейсмографы – приборы, в основе которых лежат маятники, сохраняющие свое положение при колебаниях подставки, на которой они расположены. Первые сейсмографы появились сто лет назад. На рис. 18.1.2 изображены принципиальные схемы
вертикальных и горизонтальных сейсмографов, а также пример сейсмограммы – записи сейсмических колебаний, на которых хорошо наблюдаются первые вступления волн V и S. Отмечая время первого вступления волн, т.е. появления волны на сейсмограмме и зная скорости их распространения, определяют расстояние до эпицентра землетрясения (рис. 18.1.4). В наши дни на земном наре установлены многие сотни сейсмографов, которые немедленно регистрируют любое, даже очень слабое землетрясение и его координаты. Начиная с первых сейсмических станций, оснащенных высокочувствительными сейсмографами, созданными академиком Б.Б.Голицыным в начале ХХ в., сеть таких станций в России непрерывно расширялась, хотя станции располагались неравномерно, учитывая различную сейсмичность регионов. Сейчас этих станций в России более 140, что
в 25 раз ниже, чем в Германии, причем только 15% этих станций оснащено современными цифровыми сейсмографами. Существуют также 9 центров сбора и обработки данных, работающих в режимах текущей и срочной обработки. Сведения о текущей сейсмической обстановке регулярно публикуются в сейсмологических бюллетенях и каталогах. Сейчас происходит развитие и переоснащение сейсмических сетей России современной аппаратурой. Определение глубины очага землетрясения представляет собой более сложную задачу, а существующие методы не отличаются точностью.
Интенсивность землетрясений.
Интенсивность или сила землетрясений характеризуется как в баллах (мера разрушений), так и понятием магнитуда ( высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK – 64, составленная С.В.Медведевым, В. Шпонхойером и В. Карником (см. аббревиатуру).
Рис. 18.1.2. Схема горизонтального сейсмографа с механической записью сейсмограммы острием на закопченном барабане регистратора (А): 1 – станина прибора, 2, 3 – точки крепления стальных нитей к станине, 4, 5 – точки крепления нитей к стержню груза сейсмографа, 6 – груз сейсмографа, 7 – закопченный барабан. Действие вертикального сейсмографа (Б). На горизонтальные толчки прибор реагирует очень слабо
Согласно этой шкале, принята следующая градация интенсивности или силы землетрясений:
1 –3 балла – слабые
|
4 – 5 баллов – ощутимые
6 – 7 баллов - сильные (разрушаются ветхие постройки)
8 – разрушительное (частично разрушаются прочные здания, заводские трубы)
9 – опустошительное (разрушаются большинство зданий)
10 – уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и
оползни)
11 – катастрофические (разрушаются все постройки, происходит изменение ландшафта)
12 – губительные катастрофы (полное разрушение, изменение рельефа местности на обширной площади).
Рис. 18.1.4. Время пробега сейсмических волн от эпицентра землетрясения, используемое для определения расстояния от эпицентра до точки регистрации землетрясения
Степень сотрясения на поверхности Земли, как и площадь, охваченная им, зависит от многих причин, в том числе от характера очага, глубины его залегания, типов горных пород, рыхлых отложений или скальных выступов, обводненности и др.
В целях количественной оценки меры полной энергии сейсмических волн выделившихся при землетрясении широко используется шкала магнитуд (М) по Ч.Ф.Рихтеру, профессору Калифорнийского технологического института.
М = lg(A / T) + B lg ∆+ ε
Где А и Т – амплитуда и период колебаний в волне, ∆ - расстояние от станции наблюдения до эпицентра землетрясения, В и ε - константы, зависящие от условий расположения станции наблюдения.
Это магнитуда, вычисленная по поверхностным волнам, хотя используются магнитуды по продольным и поперечным волнам.
Магнитуда 0 означает землетрясение с максимальной амплитудой смещения в 1 мкм на эпицентральном расстоянии в 100 км. При магнитуде 5 отмечаются небольшие разрушения зданий, а магнитуда 7 знаменует собой опустошительное землетрясение. Самые сильные из зарегистрированных землетрясений имели магнитуду 8,9-9,0. Следует подчеркнуть, что глубокофокусные землетрясения обычно не порождают поверхностных сейсмических волн, поэтому существуют и другие магнитудные шкалы, например, телесейсмическая для удаленных (более 2000 км от эпицентра) землетрясений или унифицированная магнитуда Б.Гутенберга, определяемая по амплитуде продольных объемных волн. Существует много модификаций шкал, позволяющих оценивать энергию всех землетрясений, происходящих на земном шаре и, в том числе, всех ядерных подземных и промышленных взрывов. В частности, оценка сейсмического момента –
Mо = µS π d φ
Где µ - сдвиговая прочность пород в зоне разлома, S – площадь поверхности разлома, <d> - среднее смещение по разлому, позволяет довольно объективно оценить величину землетрясения. Магнитуда, вычисленная по сейсмическому моменту:
Mw =23lg Mo −10,7
Наибольший из известных, сейсмический момент был установлен для землетрясения в
Чили в 1960 г. – МW= 9,6; Мо = 2,5 ⋅1030 дин⋅см.
|
Существует определенная зависимость между магнитудой (М) и силой землетрясения, выраженной в баллах (J0).
Jo =1,7 M −2,2; M =0,6 Jo +1,2
Связь между магнитудой (М), интенсивностью землетрясений в баллах (J0) и глубиной очага. (Н) выражается формулой:
Jo = aM − b lg H + C
где а,b и с – коэффициенты, определяемые эмпирически для каждого конкретного района, где произошло землетрясений.
Энергия, выделяемая при землетрясениях достигает огромных величин ивыражается формулой:
Е = π 2 ρV (A / T)
Где ρ - плотность верхних слоев Земли,, V – скорость сейсмических волн, А – амплитуда смещения, Т – период колебаний. Рассчитывать энергию позволяют данные, считываемые с сейсмограмм.
Известные геофизики, Б.Гутенберг, работавший, как и Ч.Ф.Рихтер, в Калифорнийском технологическом институте, предложилb уравнение связи между энергией землетрясения и его магнитудой по шкале Рихтера
LgE=9,9+1,9M-0,024M2
Эта формула демонстрирует колоссальное возрастание энергии при увеличении магнитуды землетрясения. Так, увеличение магнитуды землетрясения на одну единицу вызывает возрастание энергии в 32 раза, в то время как амплитуда колебания земной поверхности увеличивается лишь в 10 раз.
Если взрыв стандартной атомной бомбы в 100 кт выделяет около 1000 ⋅1018 эрг, то
у всех сильных землетрясений выделение энергии было намного большим, а сильнейшее из когда-либо зарегистрированных землетрясений, выделило энергию, сравнимe. с энергией взрыва водородной бомбы (рис.18.1.3). Увеличение М на две единицы соответствует увеличению энергии в 1000 раз.
Рис. 18.1.3. Соотношение магнитуды землетрясений и выделившейся энергии
LgE(эрг) = аМ+b
Где а – 1,5, а b –11,8
Количество энергии, выделившееся в единице объема горной породы, например, в 1 м3 на 1 сек называется удельной сейсмической мощностью.
В Российской сейсмологии используется также энергетический класс К для того, чтобы оценить величину землетрясения. К равняется десятичному логарифму
сейсмической энергии, выраженной в джоулях. Так при К=15 Е=1015 Дж или 1022 эрг. Между величинами М и К существует связь К=1,8 М + 4,6, установленная для южных районов России или для Дальнего Востока К=1,5 М + 4,6.
Интенсивность землетрясения в эпицентре землетрясения и в плейстосейстовой области тем выше, чем ближе к поверхности находится очаг. Однако, с расстоянием от эпицентра в этом случае колебания быстро затухают. При землетрясениях на больших глубинах, например, около 100 км в зоне Вранча в Румынских Карпатах, несмотря на М=5, колебания ощущались даже в Москве в декабре 1978 г.. При очень сильных землетрясениях с М=8, сейсмоколебания охватывают огромную площадь радиусом около 1000 км. Площадь, охваченная разрушением, растет в зависимости от магнитуды. Так при
|
М=5 и глубине очага в 40 км, площадь разрушений составит около 100 км2, а при М=8 – около 20000 км2.
Очаги землетрясений. Уже говорилось о том, что подавляющая часть землетрясений возникает в верхней относительно более хрупкой части земной коры на глубинах 7-30 км. Механизм этих землетрясений показывает, что все они образовались в результате смещения по разломам с почти обязательной сдвиговой компонентой. Т.к. очаг землетрясения расположен на глубине в земной коре, то в нем невозможно проводить прямые наблюдения и следить, например, за его активизацией. Поэтому любое описание очага землетрясения базируется на дистанционных наблюдениях, на использовании законов механики разрушения, моделирования и т.д. Теоретическими расчетами определяют возможные плоскости разрыва в очаге, его динамические параметры. Последние, в первом приближении, дают возможность понять, каков был механизм разрушения. Было ли это растяжение или сжатие,какова была сдвиговая компонента и ееориентировка (рис. 18.1.5).
Размеры очагов землетрясений в целом увеличиваются с возрастанием магнитуды. Если очаг располагается неглубоко, то сейсмогенный разрыв может выйти на поверхность, как это случилось, например, во время Спитакского землетрясения. Очаг представляет собой не плоскость, а некоторый объемный блок литосферы, в пределах
которого осуществляются подвижки по целому ряду отдельных разломов, сливающихся в один крупный сейсмогенный разрыв.
27 мая 1995 г. на севере о.Сахалин произошло мощное землетрясение с М=7,7. В эпицентр землетрясения попал поселок Нефтегорск, полностью разрушенный.
Рис. 18.1.5. Очаговая область Ташкентского землетрясения 1966 г. под городом. Большие круги – место главного толчка, более мелкие – афтершоки. Стрелки – направление подвижек. У поверхности стрелки – величина вспучивания по данным повторного нивелирования
При этом погибло более 2000 жителей. По шкале МSК интенсивность землетрясения составила 9 баллов. Очаг землетрясения располагался вблизи поверхности и вышел на нее
в виде системы разрывов, общей протяженностью в 40 км. Главный разрыв представляет собой правый взбросо-сдвиг, с горизонтальным смещением до 8 м и вертикальным – до 2 м. Генеральный разрыв оперяется целым рядом более мелких, образуя сложную динамическую систему, прослеживающуюся до глубины в 15 км. Этот главный сейсмический разрыв оказался унаследованным от геологически хорошо известного Верхнепильтунского правостороннего взбросо-сдвига, круто падающего к СЗ. Когда детально изучили приповерхностное строение этого разрыва, выявились горизонты
палеопочв, нарушенные, по данным Е.А.Рогожина, сейсмогенными разрывами 1800, 1400 и 1000 лет тому назад, во время еще более сильных землетрясений, чем Нефтегорское.
Очаги землетрясений в Курило-Камчатской активной зоне с М=7,9-8,3 имеют размеры уже в первые сотни км, сейсмогенные подвижки в них превышают 10 м и в целом очаги охватывают большой объем литосферы в пределах верхней части погружающейся океанской плиты.
Механизм землетрясений. Палеосейсмодислокации. Следы землетрясений, происходивших в недавнем геологическом прошлом - в голоценовое время, т.е. за последние 10 000 лет, можно обнаружить в рельефе, благодаря специальным методам, разработанным у нас в России. Сильные землетрясение всегда оставляют следы, «раны» на поверхности Земли. Когда детально изучили районы последних крупных землетрясений, произошедших в 1988 г. в Спитаке и в 1995 г. в Нефтегорске, то выявились следы прошлых, таких же сильных землетрясений в виде тектонических уступов; смещений горизонтов палеопочв; трещин, пересекающих различные современные элементы рельефа – долины, овраги, склоны гор и холмов, водоразделы. Такие сейсмогенные нарушения обычно накладываются на рельеф, совершенно не согласуясь с его элементами. В результате землетрясений возникают крупные оползни, осовы, оплывины, обвалы, прекрасно дешифрируемые на аэрофотоснимках, а крупные разломы и трещины – на космических снимках. Например, на горных склонах центральной части Большого Кавказа прекрасно видны неглубокие рвы, уступы, секущие эти склоны и располагающиеся, невзирая на особенности геологического строения местности. Их относительная свежесть свидетельствует, по-видимому, о недавних сильных землетрясениях. Поэтому изучение палеосейсмодислокаций имеет большой практический смысл, т.к. их наличие однозначно свидетельствует об активной сейсмичности района в недалеком геологическом прошлом и, следовательно, район может вновь подвергнуться сильному землетрясению.
|
|
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!