Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации

2017-06-29 555
Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации 0.00 из 5.00 0 оценок
Заказать работу

Дыхательный центр. Во время вдоха, когда воздух начинает поступать в легкие, они растягиваются и рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных и вентральных ядрах локализованы центр вдоха и выдоха. От нейронов центра вдоха возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом, вдох стимулируется вдохом.

Дыхательном центром называют совокупность взаимосвязанных нейронов ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Условно дыхательный центр можно подразделить на 3 отдела:

1.Низший - включает в себя мотонейроны спинного мозга, иннервирующие дыхательные мышцы.

2.Рабочий- объединяет нейроны продолговатого отдела и моста.

3.Высший - все вышележащие нейроны, влияющие на процесс дыхания.

Гуморальная регуляция дыхания. Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу.

В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

39) Желчь- секрет печеночных клеток. За сутки выделяется 500-1500мл. Золотисто-желтого цвета рН 7,8-8. Сотав: 97,5 вода, 2,5сухой остато. Желочные кислоты, желочные пигменты, холестерин. Роль в пищеварение= 1)нейртрализация НСL 2)усиливает действие ферментов. 3)эмульгирует жиры 4)усиливает тонус и пересттику кишечника. 5)способстувет всасыванию витаминов 6)пристеночное пищеварение.

40) Женский половой цикл длится 28±3 дня и делится на 4 периода.

1.предовуляционный – период подготовки к беременности, матка увеличивается в размерах, слизистая оболочка и ее железы разрастаются, усиливается и улучшается сокращение маточных трую и мышечного слоя матки, разрастается слизистая оболочка влагалища.созревающий фолликул вырабатывает все больше эстрогенов, растет уровень лютропина, что ведет к стимуляции синтеза прогестерона.

2.овуляционный период начинается с разрыва фолликула, выхода из него яйцеклетки и продвижения ее по маточной трубе в полость матки. Происходит резкий всплеск уровня гормонов в крови – лютропина, фоллитропина и эстрогенов. Через 16-23 ч после пика ЛГ происходит овуляция. Может произойти оплодотворение, тогда наступит беременность.

3.послеовуляционный – сначала кратковременно падает содержание гонадотропинов и эстрадиола. Нарастает продукция пргестерона, повышается секреция эстрадиола др.созревающими фолликулами. Если беременность не наступает, то начинается дегенерация желтого тела, уровень прогестерона и эстрогена падает, резко сужаются спиральные артериолы, появляется менструация. Неоплодотворенная яйцеклетка погибает, возникают тетанические сокращения мускулатуры матки, спазм сосудов, что приводит к отторжению ее слизистой оболочки и выходу обрывков слизистой вместе с кровью.

4.период покоя наступает после завершения послеовуляционного периода.

До периода полового созревания половые гормоны вырабатываются надпочечниками. По достижении полового созревания основную роль по выработке половых гормонов берут на себя половые железы. Гормональный фон создает основу, обеспечивающую половую функцию, направленную на воспроизведение. Гормоны влияют на тканевой метаболизм, на функциональное состояние нейронов в определенных структурах мозга.

беременность. Оплодотворение, т.е. слияние двух гамет разного пола - сперматозоона и яйцеклетки, является основным процессом полового размножения. Собственно беременность начинается с имплантации яйцеклетки в слизистую оболочку матки, которая осуществляется у женщины на стадии бластоцит на 6-е сутки после оплодотворения.

Имплантация оплодотворенной яйцеклетки в слизистую оболочку матки определяется гормонами, которые выделяются имплантированным трофобластом, а именно хорионический гонадотропин и плацентарный лактоген. Под влиянием этих плацентарных гормонов увеличивается секреция прогестерона желтым телом, что препятствует разрушению и выделению слизистой оболочки матки. К концу первого месяца беременности желтое тело подлежит обратному развитию. С этого времени плацента берет на себя выработку прогестерона и эстрогена, крайне необходимых для нормального течения беременности.

При беременности возникает ряд приспособительных функциональных и морфологических изменений во всех тканях, органах и системах материнского организма с целью обеспечения оптимальных условий для защиты, роста и развития плода, а также ребенка в первые месяцы жизни после рождения. Во время беременности соотношение гормонов в организме будущей матери непрерывно меняется в зависимости от потребностей плода. Продукция прогестерона и его концентрация в крови женщины прогрессивно увеличиваются до срока родоразрешения. Поскольку в основном гормон выделяется плацентой (во всяком случае в течение первого-второго месяцев беременности), считают, что его большая часть попадает в матку, непосредственно влияя на нее. Прогестерон снижает возбудимость мышц стенок матки и их чувствительность к окситоцина.

В первые недели беременности эстрогены (эстрол, эстрадиол, эстриол) синтезируются преимущественно желтым телом. Затем их начинает синтезировать плацента, которая уже на 7-й неделе производит более 50% эстрогенов, поступающих в кровоток беременной. Со временем плацента становится ведущим источником эстрогенов. Под влиянием эстрогенов развивается децидуальная оболочка, гипертрофируются мышцы стенки матки, интенсифицируется кровоснабжения. До срока родов устраняется влияние прогестерона на мышцы стенки матки, увеличивается чувствительность матки к окситоцину.

Рост молочных желез обусловлен совместным действием прогестерона и эстрогенов. Однако в этом процессе роль половых стероидов вторичная, поскольку в случае отсутствия пролактина они становятся неэффективными.

Эстрогены играют важную роль в регуляции водно-электролитного баланса у беременных, стимулируют задержку натрия, отек тканей, расслабляет шейку матки, тазовые сочленения подобное. Во время беременности повышается коры функция надпочечников и щитовидной железы, гипофиза. В конце беременности усиливается секреция глюкокортикоидов корой надпочечников плода. Беременность сопровождается увеличением частоты сердечных сокращений, систолического выброса и некоторым снижением артериального (главным образом диастолического) давления, что объясняется уменьшением ОПСС. Наряду с этим увеличивается кровоснабжение матки, почек, кишечника, кожи.

Во время беременности повышается концентрация фибриногена и большинства плазменных факторов свертывания крови (VII, VIII, IX, X), но время свертывания крови не выходит за пределы нормы. Фибринолитическая активность во время беременности снижается, причем наиболее интенсивно в последние дни перед родами.

Беременность сопровождается усилением дыхательной обмена для удовлетворения интенсивности метаболических процессов, непрерывно увеличивается по мере роста плода. Так, начиная с 8-9-й недели беременности дыхательная система претерпевает ряд морфофункциональных изменений, за счет которых (а также изменений в системах крови и кровообращения) создаются условия для легочной гипервентиляции, усиление дыхательной газообмена в соответствии с потребностями организма.

Во время беременности расходуется большое количество энергии и пластических материалов (для строения организма плода и гипертрофии половых органов матери). Избыток энергетических и пластических материалов, поступающих из едой, обеспечивается усиленной активностью органов пищеварения. У большинства беременных отмечаются четко выраженное повышение аппетита, изменение вкусов. Часто беременные предпочтение отдается фруктам, соленым и острым блюдам. Очевидно, это можно объяснить снижением остроты вкусового ощущения и обеспечения организма витаминами, микроэлементами.

Интенсивный обмен веществ в организме матери, который сопровождается неуклонным ростом метаболических процессов у плода, приводит большую нагрузку на почки. их функция активизируется за счет повышения плазмовидтоку почек (225 мл / мин), роста клубочковой фильтрации (150-200 мл / мин), канальцевой реабсорбции и секреции воды и электролитов, увеличение выделения с мочой продуктов метаболизма и пищеварения (глюкоза, водорастворимые витамины и др..). Наряду с этим наблюдается повышение инкреторной функции почек, в частности, продукции ренина, который запускает ренинангиотензин-альдостероновую систему. Однако при нормальном течении беременности не сопровождается гипертензией, что объясняется уменьшением реактивности сосудов на ангиотензин II.

Во время беременности устанавливается иммунологический взаимосвязь между организмом матери и плода, который обеспечивает существование плидноплацентарного аллотрансплантата (плода). Это достигается главным образом снижением материнской иммунологической реактивности и маточно-плацентарный барьер. Считают, что прогестерон - гормон беременности - способен подавлять опосредованную Т-лимфоцитами реакцию отслоения

41) З акон “всё или ничего” и правило “силовых отношений”. Кривая сила-времени.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее и большее количество мышечных волокон и амплитуда сокращения мышцы все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения. Закон "все или ничего": подпороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Закон "все или ничего" не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью Ошибка в опытах Люкаса и Като заключается в том, что, сосредоточив свое внимание лишь на одной стороне сложного процесса возбуждения и пренебрегая эволюционным подходом к оценке явлений, они возвели в ранг общего биологического закона частные особенности реакции частного вида живых образований— мышечной ткани.


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.