Структурно-функциональная организация эндокринной системы. Классификация гормонов. Жизненный цикл гормонов. Основные свойства гормонов. — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Структурно-функциональная организация эндокринной системы. Классификация гормонов. Жизненный цикл гормонов. Основные свойства гормонов.

2017-06-26 1166
Структурно-функциональная организация эндокринной системы. Классификация гормонов. Жизненный цикл гормонов. Основные свойства гормонов. 0.00 из 5.00 0 оценок
Заказать работу

Классификация гормонов.

Белково-пептидные гормоны. В эту группу входят все тропные гормоны, либерины и статины, инсулин, глюкагон, кальцитонин, гастрин, секретин, холецистокинин, ангиотензин II, антидиурети­ческий гормон (вазопрессин), паратиреоидный гормон и др.

Эти гормоны образуются из белковых предшественников, назы­ваемых прогормонами. Как правило, сначала синтезируется препрогормон, из которого образуется прогормон, а затем гормон.

Синтез прогормонов осуществляется на мембранах гранулярной эндоплазматической сети (шероховатый ретикулум) эндокринной клетки (рис 5.4). Большое значение для этих процессов имеет способность препрогормонов проникать через мембрану эндоплаз­матической сети в ее внутренние полости за счет того, что первые 20—25 аминокислотных остатков с N-конца у многих белковых предшественников являются одинаковыми, а на наружной мембране эндоплазматической сети имеются структуры, «узнающие» эту по­следовательность. В результате становится возможным внедрение молекулы препрогормона в липидный бислой мембраны и постепен­ное проникновение белкового предшественника во внутреннее про­странство эндоплазматической сети.

Везикулы с образующимся прогормоном переносятся затем в пластинчатый комплекс (комплекс Гольджи), где под действием мембранной протеиназы от молекулы прогормона отщепляется оп­ределенная часть аминокислотной цепи. В результате образуется гормон, который поступает в везикулы, содержащиеся в комплексе Гольджи. В дальнейшем эти везикулы сливаются с плаз­матической мембраной и высвобождаются во внеклеточное про­странство.

Различные этапы синтеза гормонов имеют неодинаковую про­должительность. Например, синтез молекулы проинсулина происходит за 1—2 мин. Транспорт проинсулина от эндоплазматической сети до комплекса Гольджи занимает 10—20 мин. «Созревание» везикул, несущих инсулин от комплекса Гольджи до плазматической мембраны, длится 1—2 ч. При действии глюкозы на β-клетки пан­креатических островков (см. рис. 5.1) стимулируется главным об­разом слияние инсулиновых везикул с плазматическими мембрана­ми, что и приводит к усиленной секреции инсулина, а скорость предыдущих этапов образования гормонов изменяется в меньшей степени. Концентрация других пептидных гормонов в крови также регулируется не влиянием на скорость их синтеза или внутрикле­точного транспорта, а изменением скорости секреции. Во многом это обусловлено тем, что в секреторных гранулах содержится такое количество гормона, что его концентрация в крови может много­кратно повышаться без дополнительного синтеза.

Поскольку многие полипептидные гормоны образуются из общего белкового предшественника, изменение синтеза одного из этих гор­монов может приводить к параллельному изменению (ускорению или замедлению) синтеза ряда других гормонов. Так, из белка проопиокортина образуются кортикотропин и β-липотропин (схе­ма 5.1), изβ-липотропина может образоваться еще несколько гор­монов: γ-липотропин, β-меланоцитостимулирующий гормон, β-эндорфин, γ-эндорфин, α-эндорфин, метионин-энкефалин.

При действии специфических протеиназ из кортикотропина могут образовываться α-меланоцитостимулирующий гормон и АКТГ-подобный пептид средней доли гипофиза. Благодаря сходству структур кортикотропина и α-меланоцитостимулирующего гормона последний имеет слабую кортикотропную активность. Кортикотропин обладает незначительной способностью усиливать пигментацию кожи.

Концентрация белково-пептидных гормонов в крови обычно со­ставляет 10-9—10-10 М. При стимуляции эндокринной железы кон­центрация соответствующего гормона возрастает в 2—5 раз.

Период полураспада белково-пептидных гормонов в крови со­ставляет 10—20 мин. Они разрушаются протеиназами клеток-ми­шеней, крови, печени и почек.

Стероидные гормоны. В эту группу входят тестостерон, эстрадиол, эстрон, прогестерон, кортизол, альдостерон и др. Эти гормоны образуются из холестерина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды). В малом количестве половые стероиды могут образовы­ваться в корковом веществе надпочечников, а кортикостероиды — в половых железах. Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндоплазматическую сеть и после этого — в цитоплазму.

В корковом веществе надпочечников синтез стероидных гормонов стимулируется кортикотропином, а в половых железах — лютеинизирующим гормоном (ЛГ). Эти гормоны ускоряют транспорт эфиров холестерина в эндокринные клетки и активируют митохондриальные ферменты, участвующие в образовании прегненолона. Кроме того, тропные гормоны активируют процессы окисления сахаров и жирных кислот в эндокринных клетках, что обеспечивает стероидогенез энергией и пластическим материалом.

Кортикостероиды. Подразделяют на две группы. Глюкокортикоиды (типичный представитель — кортизол) индуцируют синтез ферментов глюконеогенеза в печени, препятствуют погло­щению глюкозы мышцами и жировыми клетками, а также способ­ствуют высвобождению из мышц молочной кислоты и аминокислот, тем самым ускоряя глюконеогенез в печени.

Минералокортикоиды (типичный представитель — альдостерон) задерживают натрий в крови. Снижение концентрации натрия (см. раздел 5.2.5) в выделяемой моче, а также секретах слюнных и потовых желез приводит к меньшим потерям воды, так как вода движется через биологические мембраны в направлении высокой концентрации солей.

Стимуляция синтеза глюкокортикоидов осуществляется через си­стему гипоталамус—гипофиз—надпочечники (см. рис. 5.2). Стресс (эмоциональное возбуждение, боль, холод и т. п.), тироксин, адре­налин и инсулин стимулируют секрецию кортиколиберина из ак­сонов гипоталамуса. Этот гормон связывается с мембранными ре­цепторами аденогипофиза и вызывает секрецию кортикотропина, который с током крови попадает в надпочечники и стимулирует там образование глюкокортикоидов — гормонов, повышающих ус­тойчивость организма к неблагоприятным воздействиям.

Кортикотропин влияет слабо на синтез минералокортикоидов. Имеется дополнительный механизм регуляции синтеза минерало­кортикоидов, осуществляющийся через так называемую ренин-ангиотензиновую систему. Рецепторы, реагирующие на давление кро­ви, локализованы в артериолах почек. При снижении давления крови эти рецепторы стимулируют секрецию ренина почками. Ренин является специфической эндопептидной, отщепляющей от α2-глобулина крови С-концевой декапептид, который называют «ангиотензин I». От ангиотензина I карбоксипептидаза (ангиотензинпревращающий фермент, расположенный на наружной поверхности эндо­телия кровеносных сосудов) отщепляет два аминокислотных остатка и образует октапептид ангиотензин II — гормон, к которому на мембране клеток коркового вещества надпочечников имеются спе­циальные рецепторы. Связываясь с этими рецепторами, ангиотен­зин II стимулирует образование альдостерона, который действует на дистальные канальцы почек, потовые железы, слизистую обо­лочку кишечника и увеличивает в них реабсорбцию ионов Na+, Сl- и НСОз-. В результате в крови повышается концентрация ионов Na+ и снижается концентрация ионов Сl- и К+. Эти эффекты альдосте­рона полностью блокируются ингибиторами синтеза белка.

Половые стероиды. Андрогены (мужские половые гормоны) продуцируются интерстициальными клетками (гландулоцитами) се­менников и в меньшем количестве яичниками и корковым веществом надпочечников. Основным андрогеном является тестостерон (см. раздел 5.2.7). Этот гормон может претерпевать изменения в клетке-мишени — превращаться в дигидротестостерон, который обладает большей активностью, чем тестостерон. Следует отметить, что ЛГ, который стимулирует начальные этапы биосинтеза стероидов в эндокринной железе, активирует также превращение тестостерона в дигидротестостерон в клетке-мишени, тем самым, усиливая андрогенные эффекты.

Эстрогены (женские половые гормоны) в организме человека в основном представлены эстрадиолом. В клетках-мишенях они не метаболизируются.

Действие андрогенов и эстрогенов направлено в основном на органы воспроизведения, проявление вторичных половых признаков, поведенческие реакции. Андрогенам свойственны также анаболиче­ские эффекты — усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Таким образом, основные эффекты половых гормонов опосредуются процессами ин­дукции и репрессии синтеза белка.

Стероидные гормоны легко проникают через клеточную мемб­рану, поэтому их секреция происходит параллельно с синтезом. Содержание стероидов в крови определяется соотношением скоростей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гор­моны (кортикотропин, ЛГ и ангиотензин) стимулируют этот синтез. Устранение тропного влияния приводит к торможению синтеза сте­роидных гормонов.

Действующие концентрации стероидных гормонов составляют 10-11—10-9 М. Период их полураспада равен 1/2—11/2 ч.

Тиреоидные гормоны. В эту группу входят тироксин и трийодтиронин. Синтез этих гормонов осуществляется в щитовидной же­лезе, в которой ионы йода окисляются при участии пероксидазы до йодиниум-иона, способного йодировать тиреоглобулин — тетрамерный белок, содержащий около 120 тирозинов. Йодирование тирозиновых остатков происходит при участии пероксида водорода и завершается образованием монойодтирозинов и дийодтирозинов. По­сле этого происходит «сшивка» двух йодированных тирозинов. Эта окислительная реакция протекает с участием пероксидазы и завер­шается образованием в составе тиреоглобулина трийодтиронина и тироксина. Для того чтобы эти гормоны освободились из связи с белком, должен произойти протеолиз тиреоглобулина. При расщеп­лении одной молекулы этого белка образуется 2—5 молекул тирок­сина (Т4) и трийодтиронина (Тз), которые секретируются в молярных соотношениях, равных 4:1.

Синтез и секреция тиреоидных гормонов находятся под контролем гипоталамо-гипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет активный транспорт йода, а также стимулирует рост эпителиальных клеток щитовидной же­лезы. Эти клетки формируют фолликул, в полости которого про­исходит йодирование тирозина.

Выделение Тз и Т4 осуществляется с помощью пиноцитоза. Ча­стички коллоида окружаются мембраной эпителиальной клетки и поступают в цитоплазму в виде пиноцитозных пузырьков. При слиянии этих пузырьков с лизосомами эпителиальной клетки происходит расщепление тиреоглобулина, который составляет основную массу коллоида, что приводит к выделению Т3 и Т4. Тиреотропин и другие факторы, повышающие концентрацию цАМФ в щитовидной железе, стимулируют пиноцитоз коллоида, процесс образования и движения секреторных пузырьков. Таким образом, тиреотропин ус­коряет не только биосинтез, но и секрецию Т3 и Т4. При повышении уровня Т3 и Т4 в крови подавляется секреция тиреолиберина и тиреотропина.

Тиреоидные гормоны могут циркулировать в крови в неизмен­ном виде в течение нескольких дней. Такая устойчивость гормонов объясняется, по-видимому, образованием прочной связи с Т4-свя-зывающими глобулинами и преальбуминами в плазме крови. Эти белки имеют в 10—100 раз большее сродство к Т4, чем к T3, поэтому в крови человека содержится 300—500 мкг Т4 и лишь 6—12 мкг Т3.

Катехоламины. В эту группу входят адреналин, норадреналин и дофамин. Источником катехоламинов, как и тиреоидных гормонов, служит тирозин, однако при синтезе катехоламинов метаболизму подвергается свободная аминокислота. Синтез катехоламинов про­исходит в аксонах нервных клеток, запасание — в синаптических пузырьках. Катехоламины, образующиеся в мозговом веществе над­почечников, выделяются в кровь, а не в синаптическую щель, т. е. являются типичными гормонами.

В некоторых клетках синтез катехоламинов заканчивается об­разованием дофамина, а адреналин и норадреналин образуются в меньшем количестве. Такие клетки есть в составе гипоталамуса. Предполагают, что пролактостатином, т. е. гормоном гипоталамуса, подавляющим секрецию пролактина, является дофамин. Известны и другие структуры мозга (например, стриарная система), которые находятся под влиянием дофамина и нечувствительны, например, к адреналину.

В симпатических нервных волокнах дофамин не накапливается, а быстро превращается в норадреналин, который хранится в синап­тических пузырьках. Адреналина в этих волокнах значительно мень­ше, чем норадреналина. В мозговом слое надпочечников биосинтез завершается образованием адреналина, поэтому норадреналина об­разуется в 4—6 раз меньше, а дофамина сохраняются лишь следы.

Синтез катехоламинов в мозговом веществе надпочечников сти­мулируется нервными импульсами, поступающими по чревному сим­патическому нерву. Выделяющийся в синапсах ацетилхолин взаи­модействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря су­ществованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и т. д. Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов, при гипогликемии.

Катехоламины подавляют как собственный синтез, так и выде­ление. В адренергических синапсах на пресинаптической мембране есть α-адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и начинают оказывать ингибирующее влияние на секрецию катехоламинов. Аутоингибирование секреции обнаружено практически во всех тканях, секретирующих эти гормоны или нейромедиаторы.

В отличие от холинергических синапсов, постсинаптическая мем­брана которых содержит как рецепторы, так и ацетилхолинэстеразу, разрушающую медиатор, удаление катехоламинов из синапса про­исходит в результате обратного захвата медиатора нервными окон­чаниями. Поступающие в нервное окончание из синапса катехол­амины вновь концентрируются в специальных гранулах и могут повторно участвовать в синаптической передаче.

Определенное количество катехоламинов может диффундировать из синапсов в межклеточное пространство, а затем в кровь, поэтому содержание норадреналина в крови больше, чем адреналина, не­смотря на то что мозговое вещество надпочечников секретирует в кровь адреналин, а норадреналин секретируется преимущественно в синапсах. При стрессе содержание катехоламинов повышается в 4—8 раз. Период полураспада катехоламинов в крови равен 1—3 мин.

Катехоламины могут инактивироваться в тканях-мишенях, пе­чени и почках. Решающее значение в этом процессе играют два фермента — моноаминоксидаза, расположенная на внутренней мем­бране митохондрий, и катехол-О-метилтрансфераза, цитозольный фермент.

Эйкозаноиды. В эту группу входят простагландины, тромбоксаны и лейкотриены. Эйкозаноиды называют гормоноподобными вещест­вами, так как они могут оказывать только местное действие, со­храняясь в крови в течение нескольких секунд. Образуются во всех органах и тканях практически всеми типами клеток.

Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой кислоты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функционирующую преимущественно на мембранах эндоплазматической сети. Обра­зующиеся эйкозаноиды легко проникают через плазматическую мембрану клетки, а затем через межклеточное пространство пе­реносятся на соседние клетки или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увеличивается под влиянием гор­монов и нейромедиаторов, активирующих аденилатциклазу или повышающих концентрацию ионов Са2+ в клетке. Наиболее ин­тенсивно образование простагландинов происходит в семенниках и яичниках.

Простагландины могут активировать аденилатциклазу, тромбок­саны увеличивают активность фосфоинозитидного обмена, а лей­котриены повышают проницаемость мембран для ионов Са2+. По­скольку цАМФ и ионы Са2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специ­фических регуляторов.

Во многих тканях кортизол тормозит освобождение арахидоновой кислоты, что приводит к подавлению образования эйкозаноидов, и тем самым оказывает противовоспалительное действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина.

Период полураспада эйкозаноидов составляет 1—20 с. Ферменты, инактивирующие их, имеются практически во всех тканях, но на­ибольшее их количество содержится в легких.

Жизненный цикл гормонов. Основные свойства гормонов.

Включение секреции гормона в ответ на стимуляцию и продолжительность секреции различных гормонов. Некоторые гормоны, такие как адреналин и норадреналин, секретируются в течение нескольких секунд после стимуляции желез и могут продемонстрировать полную активность в течение следующих нескольких секунд или минут. Для полного проявления активности других гормонов, таких как тироксин или гормон роста, могут потребоваться месяцы. Таким образом, каждый гормон имеет собственные характеристики начала и продолжительности активности и приспособлен для обеспечения своей специфической регуляторной функции. Концентрация гормонов в циркулирующей крови и скорость секреции гормонов. Концентрации гормонов, необходимые для большинства обменных процессов и эндокринной функции, чрезвычайно малы. Концентрации гормонов в крови варьируют от I пикограмма (КГ12 г) до нескольких микрограммов (IО-3 г) в I мл крови. Скорость секреции чрезвычайно мала, обычно она исчисляется несколькими микрограммами в сутки. Как мы увидим в следующих главах, в тканях-мишенях представлены высокоспециализированные механизмы, позволяющие даже такому ничтожному количеству гормона осуществлять мощный контроль физиологических функций. Обратная связь — способ регуляции гормональной секреции.

Отрицательная обратная связь предотвращает чрезмерную активность гормональных систем. Концентрации многих гормонов в плазме колеблются в течение суток, но продукция всех изученных к настоящему моменту гормонов тщательно контролируется. В большинстве случаев эта регуляция обеспечивается благодаря механизму отрицательной обратной связи, что гарантирует должный уровень гормональной активности в тканях-мишенях. После того как стимул вызвал высвобождение гормона, ответная реакция или продукты реакции, возникшей в результате действия гормона, создают тенденцию к подавлению дальнейшего высвобождения гормона. Иными словами, гормон (или один из продуктов его активности) оказывает ингибирующее влияние по принципу отрицательной обратной связи, предотвращая гиперсекрецию или гиперактивность тканей-мишеней.

Часто контролируется не вариабельность скорости секреции самого гормона, а степень активности ткани-мишени, поэтому только в случае, когда активность ткани-мишени достигает соответствующего уровня, появляется ответный сигнал к эндокринной железе, становящийся достаточно мощным для снижения дальнейшей продукции гормона. Регуляция продукции гормона по принципу отрицательной обратной связи может быть на любых уровнях, включая генетический аппарат, опосредованный уровнями трансляции и транскрипции гормонального синтеза, а также на этапах транспортировки и высвобождения гормона из хранилищ. Всплеск продукции гормонов может обеспечиваться положительной обратной связью. В редких случаях осуществляется положительная обратная связь, когда биологическое действие гормона вызывает его дополнительную секрецию. Примером может быть всплеск продукции лютеинизирующего гормона, который возникает в результате стимулирующего влияния эстрогенов на переднюю долю гипофиза перед овуляцией. Секретируемый ЛГ действует на яичники, стимулируя дополнительную продукцию эстрогенов, которые, в свою очередь, вызывают увеличение секреции ЛГ. Co временем, когда ЛГ достигнет соответствующей концентрации, установится обычный контроль по принципу отрицательной обратной связи.

Существуют циклические колебания концентрации гормона. Сезонные и возрастные изменения, стадии развития, суточные циклы и сон приводят к преобладанию положительной или отрицательной обратной связи, регулирующей продукцию гормона и колебания его высвобождения. Например, продукция гормона роста заметно увеличивается во время ранних периодов сна и снижается на поздних стадиях. Во многих случаях циклические колебания гормональной секреции являются следствием изменения активности нейрональных систем, контролирующих высвобождение гормона.

Транспорт гормонов кровью

Водорастворимые гормоны (пептиды и катехоламины) растворимы в плазме и транспортируются от мест их синтеза к тканям-мишеням, где гормоны диффундируют из капилляров в интерстициальную жидкость и направляются к клеткам-мишеням.

Стероидные и тиреоидные гормоны, напротив, циркулируют в крови, будучи связанными с белками плазмы (например, более 99% тироксина). Обычно не более 10% стероидных и тиреоидных гормонов присутствуют в плазме в свободном виде. Конъюгированные с белками гормоны не могут диффундировать через стенки капилляров и не образуют, таким образом, активной формы до тех пор, пока не состоится их разобщение, что предупреждает гиперстимуляцию клеток-мишеней. Относительно большое количество гормонов в связанной форме являются резервом, из которого восстанавливается концентрация свободных гормонов, когда они связываются с рецепторами или покидают кровеносное русло.

Очищение крови от гормонов. Увеличивать или уменьшать концентрацию гормона в крови могут два фактора: (I) скорость секреции гормона; (2) скорость извлечения гормона из крови, которую называют скоростью метаболического очищения. Она обычно равна количеству миллилитров плазмы крови, освобождающейся от гормона за минуту. Для определения этого показателя необходимо знать: (I) скорость извлечения гормона из плазмы за минуту; (2) концентрацию гормона в миллилитре плазмы крови. Скорость метаболического очищения определяют по следую­щей формуле:

Скорость метаболического очищения == Скорость извлечения гормона из плазмы /

Концентрация гормона в миллилитре плазмы.Обычно процедура определения скорости ме­таболического очищения следующая. Гормон снабжают радиоактивной меткой, затем вводят с постоянной скоростью в кровоток до тех пор, пока его концентрация не установится на постоянном уровне. С момента установления постоянного уровня концентрации наступает равновесие между скоростью введения гормона в кровь со скоростью его извлечения из плазмы. В это время концентрацию гормона определяют с помощью стандартных методов измерения концентрации радиоактивных веществ. Затем, используя приведенную формулу, можно рассчитать скорость метаболического очищения плазмы от гормона.

Плазма очищается от гормона различными путями, включая: (I) метаболическое разрушение гормона в тканях; (2) связывание гормона в тканях; (3) экскрецию гормона печенью с желчью; (4) экскрецию почками с мочой. Снижение скорости метаболического очищения от данного гормона может стать причиной чрезмерного повышения его концентрации в жидких средах организма. Например, болезни печени могут стать причиной подобных состояний применительно к стероидным гормонам, т.к. они экскретируются с желчью именно печенью. Иногда гормоны разрушаются клетками мишенями. Они поглощаются клетками путем эндоцитоза в виде гормон-рецепторного комплекса, затем гормон метаболизируется клеткой, а рецепторы обычно встраиваются обратно в ее мембрану.

Большинство гормонов-пептидов и катехоламинов водорастворимы и свободно циркулируют в крови. Обычно они разрушаются ферментами крови и тканей и быстро экскретируются почками и печенью, поэтому присутствуют в крови в течение короткого промежутка времени. Например, период полувыведения ангиотензина II, циркулирующего в крови, составляет менее I мин.

Гормоны, связанные с белками плазмы, покидают кровоток существенно медленнее и могут сохраняться в нем на протяжении нескольких часов и даже дней. Так, период полувыведения кортикостероидов составляет от 20 до 100 мин, в то время как связанные с белками крови гормоны щитовидной железы имеют период полувыведения от I до б сут.

85.Механизм дейчтвия стероидных и тиреоидных гормонов.

Стероидные гормоныувеличивают синтез белков.

Другим способом действия гормонов, особенно стероидных, секретируемых корой надпочечников, яичниками и семенниками, является изменение синтеза белков в клетках-мишенях. Затем эти белки функционируют как ферменты, транспортные или структурные белки, что в целом обеспечивает изменение функций клеток.

Последовательность событий, обеспечиваемая стероидными гормонами, следующая.

1. Стероидный гормон диффундирует через мембрану клетки и попадает в цитоплазму,

где связывается с белком-рецептором.

2. Комплекс гормона с белком-рецептором транспортируется или диффундирует в ядро.

3. Комплекс присоединяется к специфическим

участкам ДНК хромосомы, активируя процессы транскрипции путем образования мРНК.

4. мРНК диффундирует в цитоплазму, где обеспечивает процессы трансляции на рибосомах,

формирующих новые белки.

Например, альдостерон (один из гормонов, секретируемых корой надпочечников) попадает в цитоплазму клеток почечных канальцев, содержащих специфический белок-рецептор альдостерона. Таким образом, в этих клетках мы наблюдаем уже изложенную последовательность событий. Приблизительно через 45 мин в клетках тубулярного аппарата начинают появляться белки, обеспечивающие реабсорбцию натрия и секрецию калия в канальцах. Максимальная активность стероидных гормонов задерживается на срок от 45 мин до нескольких часов и даже дней. Это заметно отличается от почти немедленного действия некоторых гормонов-пептидов или производных аминокислот, таких как вазопрессин или норадреналин.

Гормоны щитовидной железы стимулируют процессы транскрипции в ядре клетки

Тиреоидные гормоны тироксин и трийодтиронин обусловливают стимуляцию процессов

транскрипции специфических генов в ядре. Осуществляя эту задачу, гормоны связываются с белком-рецептором, локализованным в ядре. Эти рецепторы — преимущественно протеины, расположенные на хромосомах; они одинаково контролируют функцию как промоутеров, так и операторов генов (см. главу 3).

Существуют две важные особенности влияния тиреоидных гормонов на ядро клетки.

1. Гормоны активируют генетические механизмы продуцирования многих типов клеточных белков — вероятно, 100 или более. Многие из белков являются ферментами, способствующими усилению метаболической активности практически во всех клетках организма.

2. Однократно связавшись с внутриклеточными рецепторами, гормоны щитовидной железы могут обеспечивать контроль экспрессии гена в течение нескольких дней и даже недель.

Или:

Молекулярные механизмы действия гормонов (покровский)
Гормоны, действующие через мембранные рецепторы и системы его вторичных посредников, стимулируют химическую модификацию белков.
Наиболее хорошо изучено фосфорилирование. Регуляция, лроисходяшая за счет химических процессов (синтез и расщепление вторичного посредника, фосфорилирование и дефосфорилирование белка), развиваетсж и гасится за минуты или десятки минут.

Стероидные и тиреоидные гормоны имеют цитозольные или ядерные
рецепторы, что позволяет им взаимодействовать с хроматином и влиять на экспрессию генов. Эта регуляция, развивающаяся путем индукции или репрессии синтеза мРНК и белков, реализуется спустя 3—6 ч после появления гормона в крови, а гасится спустя 6—12 ч. Промежуточное положение в этой иерархии занимают факторы роста. Их взаимодействие с рецептором приводит сначала к фосфорилированию определенных белков, а затем к делению клеток.
Адренергические рецепторы вне зависимости от локализации (в синапсе или вне его) относятся к семейству рецепторов, 7 раз пронизывающих плазматическую мембрану и сопряженных с G-белками. Известны а-1А-, а-1В- и a-1C-адренорецепторы, а-2А-, а-2В- и а-2С-адренорецепторы, а также в-1-, в-2- и в-3-адренорецепторы. Все a-1-рецепторы стимулируют фосфолипазу С, гидролизующую фосфоинозитиды. Все а-2-рецепторы ингибируют аденилатциклазу, а все в-рецепторы ее активируют.
Кроме того, а-2А-рецепторы могут активировать К+-каналы, а-2А- и а-28-рецепторы ингибируют Са2+-каналы, а в-1-рецепторы активируют
Са2+-каналы (рис. 4.3).
В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как а-, так и в-адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам — неиромедиаторам, гормонам, простагландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него продолжительность и амплитуду регуляторного сигнала, для каждого характерно определенное соотношение активностей систем генерации вторичных посредников в клетке или изменения мембранного потенциала. уровне исполнительных систем клетки может происходить как усиление, так и взаимное гашение разных регуляторных сигналов.
На определенных стадиях онтогенеза или при достижении критического для организма отклонения от нормы того или иного фактора гомеостаза (гипотермия, гипогликемия, гипоксемия, потеря крови и др.) включается медленная, но наиболее мощная система эндокринной регуляции, действующая через стероидные (андрогены, эстрогены, прогестины, глюкокортикоиды и минералокортикоиды) и тиреоидные (тироксин и трийодтиронин) гормоны. Молекулы этих регуляторов, имея липофильную природу, легко проникают через липидный бислой и связываются со своими рецепторами в цитоплазме или ядре (рис. 4.4.). Затем гормонрецепторный комплекс связывается с ДНК и белками хроматина, что стимулирует синтез матричной РНК на определенных генах. Трансляция мРНК приводит к появлению в клетке новых белков, которые вызывают физиологический эффект этих гормонов.
Стероидные и тиреоидные гормоны могут также репрессировать некоторые гены, что реализуется в биологический эффект путем уменьшения количества определенных белков в клетке. Обычно эти гормоны изменяют содержание того или иного белка не путем ускорения-замедления транскрипции функционирующих генов, а за счет включения-выключения новых генов. Так, например, стимулирование глюкокортикоидами аминотрансферазной активности печени происходит благодаря появлению в клетках новых изоформ аминотрансфераз.
К числу белков, экспрессия которых в клетке контролируется гормонами, относятся не только ферменты, участвующие в метаболизме, но и многие рецепторы, а также регуляторные белки и ферменты, участвующие в обмене вторичных посредников. Благодаря этому стероидные и тиреоидные гормоны могут участвовать в формировании не только возрастных и половых признаков но и определять психоэмоциональный статус организма, а также баланс катаболических и анаболических реакций в и тканях, их чувствительность к нейромедиаторам и гормонам.

86.Механизмы действия пептидных, белковых гормонов и гормонов-производных аминокислот (активация мембранного рецептора и системы вторичных мессенджеров).

Молекулу гормона обычно называют первичным посредником регуляторного эффекта, или лигандом. Молекулы большинства гормонов связываются со специфическими для них рецепторами плазматических мембран клеток мишеней, образуя лиганд-рецепторный комплекс. Для пептидных, белковых гормонов и катехоламинов его образование является основным начальным звеном механизма действия и приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, органоидах и ядре клетки. Среди ферментов, активируемых лиганд-рецептор-ным комплексом, описаны: аденилатциклаза, гуанилатциклаза, фосфолипа-зы С, D и А2, тирозинкиназы, фосфаттирозинфосфатазы, фосфоинозитид-3-ОН-киназа, серинтреонин-киназа, синтаза N0 и др. Вторичными посредниками, образующимися под влиянием этих мембранных ферментов, являются: 1) циклический аденозинмонофосфат (цАМФ); 2) циклический гуано зинмонофосфат (цГМФ); 3) инозитол-3-фосфат (ИФЗ); 4) диацилглицерол; 5) олиго (А) (2,5-олигоизоаденилат); 6) Са2+ {ионизированный кальций); 7) фосфатидная кислота; 8) циклическая аденозиндифосфатрибоза; 9) N0 (оксид азота). Многие гормоны, образуя лиганд-рецепторные комплексы, вызывают активацию одновременно нескольких мембранных ферментов и, соответственно, вторичных посредников.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд. Значительная часть гормонов и биологически активных веществ взаимодействуют с семейством рецепторов, связанных с G-белками плазматической мембраны (андреналин, норадреналин, аденозин, ангиотензин, эндотелии и др.).

Основные системы вторичных посредников.

Система аденилатциклаза — цАМФ. Мембранный фермент аденилатциклаза может находиться в двух формах — активированной и неактивированной. Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение Mg к аденилатциклазе и ее активацию. Так действуют активирующие аде-нилатциклазу гормоны — глюкагон, тиротропин, паратирин, вазопрессин (через V-2-рецепторы), гонадотропин и др. Ряд гормонов, напротив, подавляет аденилатциклазу — соматостатин, ангиотензин-II и др. Гормонрецепторные комплексы этих гормонов взаимодействуют в мембране клетки с другим регуляторным ингибирующим белком (GI-белок), который вызывает гидролиз гуанозинтрифосфата (ГТФ) до гуанозиндифосфата (ГДФ) и, соответственно, подавление активности аденилатциклазы. Адреналин через р-адренорецепторы активирует аденилатциклазу, а через альфа1-адренорецепторы ее подавляет, что во многом и определяет различия эффектов стимуляции разных типов рецепторов. Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию двух типов протеинкиназ в цитоплазме клетки, ведущих к фосфорилированию многочисленных внутриклеточных белков. Это повышает или снижает проницаемость мембран, активность и количество ферментов, т. е. вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги жизнедеятельности клетки. В табл. 6.2 приведены основные эффекты активации цАМФ-зависимых протеинкиназ.

Трансметилазная система обеспечивает метилирование ДНК, всех типов РНК, белков хроматина и мембран, ряда гормонов на уровне тканей, фосфолипидов мембран. Это способствует реализации многих гормональных влияний на процессы пролиферации, дифференцировки, состояние проницаемости мембран и свойства их ионных каналов и, что важно подчеркнуть особо, влияет на доступность мембранных рецепторных белков молекулам гормонов. Прекращение гормонального эффекта, реализуемого через систему аденилатциклаза — цАМФ, осуществляется с помощью специального фермента фосфодиэстеразы цАМФ, вызывающей гидролиз этого вторичного посредника с образованием аденозин-5-монофосфата. Однако этот продукт гидролиза превращается в клетке в аденозин, также обладающий эффектами вторичного посредника, так как подавляет в клетке процессы метилирования.

Система гуанилатциклаза-цГМФ. Активация мембранной гуанилатциклазы происходит не по


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.063 с.