История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Электрический ток в газах. Виды и типы разрядов.

2017-06-25 1384
Электрический ток в газах. Виды и типы разрядов. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Это объясняется тем, что га­зы при обычных условиях состоят из ней­тральных атомов и молекул и не содержат свободных зарядов. Газ становится проводником электричест­ва, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (например, поднеся к заря­женному электрометру пламя свечи, наблюдаем спад его заряда; здесь электро­проводность газа вызвана нагреванием).

При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к об­разованию свободных электронов и поло­жительных ионов. Электроны могут при­соединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохожде­ние электрического тока через газы на­зывается газовым разрядом.

Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафио­летовое, рентгеновское и g-излучения), корпускулярное излучение (потоки элек­тронов, протонов, a-частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить оп­ределенную энергию, называемую энер­гией ионизации, значения которой для атомов различных веществ лежат в преде­лах 4—25 эВ.

Одновременно с процессом ионизации газа всегда идет и обратный процесс — процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединя­ются между собой с образованием ней­тральных атомов и молекул. Чем больше ионов возникает под действием ионизато­ра, тем интенсивнее идет и процесс ре­комбинации.

Электропроводность га­за нулю не равна никогда, так как в нем всегда имеются свободные заряды, обра­зующиеся в результате действия на газы излучения радиоактивных веществ, имею­щихся на поверхности Земли, а также космического излучения. Эта незначитель­ная электропроводность воздуха (интен­сивность ионизации под действием указан­ных факторов невелика) служит причиной утечки зарядов наэлектризованных тел да­же при хорошей их изоляции.

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока.

Разряды, существующие только под действием внешних ионизаторов, называ­ются несамостоятельными.

Самостоятельный газовый разряд и его типы

Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным.

Напряжение, при кото­ром возникает самостоятельный разряд, называется напряжением пробоя.

Существует четыре типа самостоятельного разряда: тлеющий, искровой, дуговой и коронный.

1. Тлеющий разряд возникает при ни­зких давлениях. Если к электродам, впа-

янным в стеклянную трубку длиной 30—50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно отка­чивая из трубки воздух, то при давлении ж 5,3—6,7 кПа возникает разряд в виде светящегося извилистого шнура краснова­того цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается.

Тлеющий разряд широко используется в технике. Так как свечение положитель­ного столба имеет характерный для каж­дого газа цвет, то его используют в газо­светных трубках для светящихся надписей и реклам (например, неоновые газораз­рядные трубки дают красное свечение, аргоновые — синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, по­глощается нанесенным на внутреннюю по­верхность трубки флуоресцирующим ве­ществом (люминофором), начинающим под воздействием поглощенного излучения светиться.

Искровой разряд возникает при больших напряженностях электрического поля (Ё=3•106 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного.

Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованно­го газа — стримеров. Стримеры возника­ют не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие мо­менты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого коли­чества энергии газ в искровом промежутке нагревается до очень высокой температу­ры (примерно 104 К), что приводит к его свечению. Быстрый нагрев газа ведет к по­вышению давления и возникновению удар­ных волн, объясняющих звуковые эффек­ты при искровом разряде — характерное потрескивание в слабых разрядах и мощ­ные раскаты грома в случае молнии, явля­ющейся примером мощного искрового раз­ряда между грозовым облаком и Землей или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигате­лях внутреннего сгорания для электроискровой точ­ной обработки металлов (резание, сверле­ние). Его используют в спектральном ана­лизе для регистрации заряженных частиц (искровые счетчики).

Дуговой разряд. Если после зажи­гания искрового разряда от мощного источника постепенно уменьшать расстоя­ние между электродами, то разряд стано­вится непрерывным — возникает дуговой разряд. При этом сила тока резко воз­растает, достигая сотен ампер, а напряже­ние на разрядном промежутке падает до

ряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В. В. Петровым). При атмосферном дав­лении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление — кратер, являю­щийся наиболее горячим местом дуги.

По современным представлениям, ду­говой разряд поддерживается за счет вы­сокой температуры катода из-за интенсив­ной термоэлектронной эмиссии, а также термической ионизации молекул, обуслов­ленной высокой температурой газа.

Дуговой разряд находит широкое при­менение в народном хозяйстве для сварки и резки металлов, получения высококаче­ственных сталей (дуговая печь) и освеще­ния (прожекторы, проекционная аппара­тура). Широко применяются также дуго­вые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником уль­трафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления перемен­ного тока.

4. Коронный разряд — высоковольт­ный электрический разряд при высоком (например, атмосферном) давлении в резконеоднородном поле вблизи электродов с большой кривизной поверхности (напри­мер, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то во­круг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае от­рицательной короны рождение электронов, вызывающих ударную ионизацию молекул катода под действием положительных ионов, в случае положительной — вслед­ствие ионизации газа вблизи анода. В естественных условиях корона возника­ет под влиянием атмосферного электриче­ства у вершин мачт (на этом основано действие молниеотводов), деревьев. Вредное действие короны вокруг проводов высоковольтных линий передачи проявля­ется в возникновении вредных токов утеч­ки. Для их снижения провода высоковоль­тных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.

Используется коронный разряд в элек­трофильтрах, применяемых для очистки промышленных газов от примесей. Коронный разряд применяется также при нанесении порош­ковых и лакокрасочных покрытий.

14) Электрический ток в полупроводниках. Примесная и собственная проводимость.

Полупроводник:

- вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость (1/R) увеличивается.
- наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.
При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью? которая невелика.

Собственная проводимость бывает двух видов:

1) электронная (проводимость "n " - типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2) дырочная (проводимость " p" - типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей.


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.