Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Топ:
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Интересное:
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Дисциплины:
2017-06-25 | 463 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы. Незаряженные частицы (-кванты, нейтроны, нейтрино) детектируются по вторичным заряженным частицам, возникающим в результате их взаимодействия с веществом детектора.Нейтрино непосредственно не регистрируются детектором. Они уносят с собой определённую энергию и импульс. Недостачу энергии и импульса можно обнаружить, применяя закон сохранения энергии и импульса к другим зарегистрированным в результате реакции частицам.
Быстрораспадающиеся частицы регистрируются по их продуктам распада. Большое применение нашли детекторы, позволяющие непосредственно наблюдать траектории частиц. Так с помощью камеры Вильсона, помещенной в магнитное поле были открыты позитрон, мюон и -мезоны, с помощью пузырьковой камеры - многие странные частицы, с помощью искровой камеры регистрировались нейтринные события и т.д.
1. Счётчик Гейгера. Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью.
При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.
|
2. Пропорциональный счетчик. Пропорциональный счетчик имеет такую же конструкцию, как и счётчик Гейгера. Однако за счёт подбора напряжения питания и состава газовой смеси в пропорциональном счетчике при ионизации газа пролетевшей заряженной частицей не происходит коронного разряда. Под действием электрического поля создаваемого вблизи положительного электрода первичные частицы производят вторичную ионизацию и создают электрические лавины, что приводит к усилению первичной ионизации созданной пролетевшей через счётчик частицы в 103 - 106 раз. Пропорциональный счетчик позволяет регистрировать энергию частиц.
3. Ионизационная камера. Так же как в счетчике Гейгера и пропорциональном счетчике в ионизационной камере используется газовая смесь. Однако, по сравнению с пропорциональным счетчиком напряжение питания в ионизационной камере меньше и усиления ионизации в ней не происходит. В зависимости от требований эксперимента для измерения энергии частиц используется либо только электронная компонента токового импульса, либо электронная и ионная.
4. Полупроводниковый детектор. Устройство полупроводникового детектора, которые обычно изготовляются из кремния или германия, аналогично устройству ионизационной камеры. Роль газа в полупроводниковом детекторе играет определенным образом созданная чувствительная область, в которой в обычном состоянии нет свободных носителей заряда. Попав в эту область заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне - дырки. Под действием приложенного к напыленным на поверхность чувствительной зоны электродам напряжения, возникает движение электронов и дырок, формируется импульс тока. Заряд импульса тока несет информацию об количестве электронов и дырок и соответственно об энергии, которую заряженная частица потеряла в чувствительной области. И, если частица полностью потеряла энергию в чувствительной области, проинтегрировав токовый импульс получают информацию об энергии частицы. Полупроводниковые детекторы обладают высоким энергетическим разрешением.
|
Число пар ионов nион в полупроводниковом счётчике определяется формулой Nион = E/W,
где E - кинетическая энергия частицы, W - энергия, необходимая для образования одной пары ионов. Для германия и кремния W ~ 3-4 эВ и равна энергии необходимой для перехода электрона из валентной зоны в зону проводимости. Малая величина W определяет высокое разрешение полупроводниковых детекторов, по сравнению с другими детекторами, в которых энергия первичной частицы тратится на ионизацию (Еион >> W).
5. Камера Вильсона. Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа
6. Пузырьковая камера. Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.
Камера Вильсона и пузырьковая камера имеют огромное преимущество, которое заключается в том, что можно непосредственно наблюдать все заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и поэтому пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.
|
7. Ядерные эмульсии. Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.
8. Искровая камера. Искровая камера состоит нескольких плоских искровых промежутков, объединённых в одном объёме. После прохождения заряженной частицы через искровую камеру на её электроды подаётся короткий высоковольтный импульс напряжения. В результате вдоль трека образуется видимый искровой канал. Искровая камера, помещённая в магнитное поле, позволяет не только детектировать направление движения частицы, но и по искривлению траектории определять тип частицы и её импульс. Размеры электродов искровых камер могут доходить до нескольких метров.
9. Стриммерная камера. Это аналог искровой камеры, с большим межэлектродным расстоянием ~0.5 м. Длительность высоковольтного разряда подаваемого на искровые промежутки составляет ~10-8с. Поэтому образуется не искровой пробой, а отдельные короткие светящиеся световые каналы - стриммеры. В стриммерной камере можно регистрировать одновременно несколько заряженных частиц.
10. Пропорциональная камера. Пропорциональная камера обычно имеет плоскую или цилиндрическую форму и в каком-то смысле является аналогом многоэлектродного пропорционального счетчика. Высоковольтные проволочные электроды отстоят друг от друга на расстоянии нескольких мм. Заряженные частицы, проходя через систему электродов, создают на проволочках импульс тока длительностью ~10-7 с. Регистрируя эти импульсы с отдельных проволочек можно с точностью до нескольких микрон восстановить траекторию частиц. Разрешающее время пропорциональной камеры составляет несколько микросекунд. Энергетическое разрешение пропорциональной камеры ~5-10%.
|
11. Дрейфовая камера. Это аналог пропорциональной камеры, позволяющий с ещё большей точностью восстановить траекторию частиц.
Искровая, стриммерная, пропорциональная и дрейфовая камеры обладая многими преимуществами пузырьковых камер, позволяют запускать их от интересующего события, используя их на совпадения со сцинтилляционными детекторами.
12. Сцинтилляционный детектор. Сцинтилляционный детектор использует свойство некоторых веществ светиться при прохождении заряженной частицы. Кванты света, образующиеся в сцинтилляторе, затем регистрируются с помощью фотоумножителей. Используются как кристаллические сцинтилляторы, например, NaI, BGO, так и пластиковые и жидкие. Кристаллические сцинтилляторы в основном используются для регистрации гамма-квантов и рентгеновского излучения, пластиковые и жидкие - для регистрации нейтронов и временных измерений. Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.
13. Калориметры. Калориметры представляют собой чередующиеся слои вещества, в котором тормозятся частицы высоких энергий (обычно это слои железа и свинца) и детекторы, в качестве которых используют искровые и пропорциональные камеры или слои сцинтиляторов. Ионизирующая частица высокой энергии (E > 1010 эВ), проходя через калориметр, создаёт большое число вторичных частиц, которые, взаимодействуя с веществом калориметра, в свою очередь создают вторичные частицы - образуют ливень частиц в направлении движения первичной частицы. Измеряя ионизацию в искровых или пропорциональных камерах или световой выход сцинтиляторов, можно определить энергию и тип частицы.
14. Черенковский счётчик. Работа черенковского счётчика основана на регистрации излучения Черенкова - Вавилова, возникающего при движении частицы в среде со скоростью v превышающей скорость распространения света в среде (v > c/n). Свет черенковского излучения направлен вперёд под углом по направлению движения частицы.
|
|
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!