Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Интересное:
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Дисциплины:
2017-06-13 | 453 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Рассмотрим математическую сущность устойчивости и неустойчивости линейных стационарных САУ. Согласно данному выше физическому определению устойчивость зависит только от характера свободного движения системы. Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением
,
где x(t) = xсв(t) - свободная составляющая выходной величины системы.
Вынужденная составляющая выходной величины, зависящая от вида внешнего воздействия и правой части дифференциального уравнения (2.1), на устойчивость системы не влияет.
Система является устойчивой, если свободная составляющая xсв(t) переходного процесса с течением времени стремится к нулю, т.е. если
Очевидно, что при этом выходная величина системы будет стремиться к вынужденной составляющей, определяемой правой частью уравнения. Устойчивость в смысле условия (4.2) принято называть асимптотической.
Если свободная составляющая неограниченно взрастает, т.е. если
,
то система неустойчива.
Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости.
Найдем общее условие, при котором система, описываемая уравнением, устойчива. Решение уравнения
xсв(t) = ,
где Ck - постоянные интегрирования, зависящие от начальных условий;
pk - корни характеристического уравнения
.
Корни характеристического уравнения могут быть действительными (pk=ak), мнимыми (pk=jbk) и комплексными
pk=ak ± jbk,
причем как комплексные, так и мнимые корни попарно сопряжены.
Свободная составляющая (4.4) удовлетворяет условию устойчивости, если каждое слагаемое вида . Характер этой функции времени зависит от вида корня pk.
|
Рассмотрим все возможные случаи расположения корней характеристического уравнения на комплексной плоскости и соответствующие им функции xсв(t), которые показаны внутри кругов (как на экране осциллографа)
1) Каждому действительному корню pk=ak в решении соответствует слагаемое вида
xсвk(t) = .
Если ak<0 (корень p1), то функция плавно стремится к нулю. Если ak>0 (корень p3), то функция неограниченно возрастает. Если ak=0 (корень p2), то эта функция остается постоянной.
2) Каждой паре сопряженных комплексных корней pk=ak+jbk и pk+1=ak‑jbk в решении соответствуют два слагаемых, которые могут быть объединены в одно слагаемое
xсвk(t) = 2 sin(bkt+yk).
Функция представляет собой синусоиду с частотой bk и амплитудой, изменяющейся по экспоненте. Если ak < 0 то колебательная составляющая будет затухать.
Если ak > 0 (корни p8 и p9),то амплитуда колебаний будет неограниченно возрастать. Наконец, если ak = 0 (корни p6 и p7), т.е. оба сопряженных корня - мнимые (pk=jbk, pk+1=-jbk), то xсвk(t)=2 sin(bkt+yk) - незатухающая синусоида bk.
Если среди корней характеристического уравнения (4.5) имеются l равных между собой корней pl, то в решении (4.4) вместо l слагаемых вида появится одна составляющая
.
Учитывая, что функция вида при любом b убывает быстрее, чем возрастают слагаемые вида , можно доказать, что и в случае кратности корней решение будет стремиться к нулю лишь при отрицательности действительной части кратных корней pl.
|
|
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!