Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Исследование фонтанных скважин

2017-06-12 1117
Исследование фонтанных скважин 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Исследование фонтанных скважин необходимо для установления оптимального режима эксплуатации. Исследования проводятся как методом пробных откачек, так и по кривой восстановления забойного давления после остановки скважины. Метод пробных откачек применяют при исследовании для определения продуктивной характеристики скважин и установления технологического режима ее работы, а исследование по кривой восстановления забойного давления – для определения параметров пласта.

Кроме этого, периодически ведут отбор проб для определения свойств нефти.

Идея метода пробных откачек – в замене (4 – 5 раз) штуцеров и измерении параметров.

Глубинные измерения производятся глубинными приборами (манометрами), которые лебедками (ручными, механизированными) спускают в скважину на стальной проволоке диаметром от 0,6 до 2,0 мм.

По данным исследования строят графики зависимости дебита скважины Q от забойного давления Р или от величины депрессии ∆Р, т. е. перепада между пластовым и забойным давлениями (∆Р = Р – Р ). Такие графики называются индикаторными диаграммами скважин. По форме линии индикаторных диаграмм (рис. 6.3.) могут быть прямыми (линия 1), выпуклыми (линия 2) и вогнутыми (линия 3) относительно дебитов.

Для добывающих скважин могут быть построены прямолинейные диаграммы (когда эксплуатируется пласт с водонапорным режимом и приток однородной жидкости в скважину происходит по линейному закону фильтрации); криволинейные – с выпуклостью, обращенной к оси дебитов; и диаграммы, одна часть которых прямолинейна, а другая при увеличении депрессии и дебитов – криволинейна (рис.6.3., линия 4). Искривление индикаторной линии обычно происходит вследствие нарушения линейного закона фильтрации.

Во всех случаях, когда залежь эксплуатируется на режиме, отличающемся от водонапорного, индикаторная линия будет выпуклой по отношению к оси дебитов.

Форма индикаторной линии может быть вогнутой по отношению к оси дебитов (рис. 6.3, линия 3). Поэтому в тех случаях, когда получают вогнутые индикаторные линии, исследование на приток считают неудовлетворительным и его необходимо повторить.

 

Рисунок.6.3 – Индикаторные диаграммы

 

Приток жидкости к забою скважины определяется зависимостью:

Q = K (Р – Р ) n, (6.7)

где К – коэффициент продуктивности; n – коэффициент, показывающий характер фильтрации жидкости через пористую среду.

При линейном законе фильтрации n = 1 (индикаторная линия – прямая). Линию, выпуклую к оси дебитов, получают при n > 1, а вогнутую – при n < 1. При линейном законе фильтрации уравнение (6.7) принимает вид

 

Q = K(Р – Р ). (6.8)

Коэффициентом продуктивностидобывающей скважины К называется изменение ее дебита при изменении перепада (депрессии) между пластовым и забойным давлениями на единицу:

. (6.9)

Если дебит измерять в т/сут (м3/сут), а перепад давления в МПа, то размерность коэффициента продуктивности будет т/(сут·МПа), или м3/(сут·МПа). Коэффициент продуктивности обычно определяют по данным индикаторной линии. Если индикаторная линия имеет прямолинейный участок, который затем переходит в криволинейный, то коэффициент продуктивности определяют только по прямолинейному участку. Для установления коэффициента продуктивности по криволинейному участку необходимо знать перепад давления, соответствующий этому коэффициенту.

По полученному в результате исследования скважины коэффициенту продуктивности устанавливают режим ее работы, подбирают необходимое эксплуатационное оборудование. По изменениям этого коэффициента судят об эффективности обработок призабойной зоны скважин, а также о качестве подземных ремонтов. Сравнивая газовые факторы и коэффициенты продуктивности до и после обработки или ремонта скважины, судят о состоянии скважины.

 

 

5.ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

Газлифтная эксплуатация скважин является продолжением фонтанной эксплуатации, при которой недостающее количество газа для подъема жидкости закачивают в скважину с поверхности. Если пластовую энергию, характеризуемую газовым фактором Gэф, дополняют энергией газа, закачиваемого в скважину с поверхности, происходит искусственное фонтанирование, которое называют газлифтнымподъемом, а способ эксплуатации – газлифтным.

При фонтанной эксплуатации по мере разработки месторождения условия эксплуатации скважин ухудшаются: обводняется продукция – увеличивается гидростатическое давление столба флюидов, образуется высоковязкая эмульсия, возрастают потери давления на трение в стволе и выкидной линии, что приводит к росту забойного давления, уменьшается эффективный газовый фактор Gэф и увеличивается потребный удельный расход газа R0; возможно уменьшение пластового давления, а также соответственно забойного и башмачного давлений, что вызывает увеличение удельного расхода R0. Это приводит к нарушению условия фонтанирования, то есть

Gэф< R0 (7.1)

Так как условию Gэф = R0 соответствует минимальное забойное давление фонтанирования, a pз.min < pпл, то скважина прекращает фонтанирование при определенном дебите Q > 0. С увеличением рз уменьшается R0, поэтому осуществлением ППД продлевается период фонтанирования до наступления определенной обводненности.

Область применения газлифта – высокодебитные скважин с большими забойными давлениями, с высокими газовыми факторами и забойными давлениями ниже давления насыщения, содержащие в продукции скважины песок, а также скважины, эксплуатируемые в труднодоступных условиях(например, затопляемость, паводки, болота и др.). Газлифт характеризуется высокой технико-экономической эффективностью, отсутствием в скважинах механизмов и трущихся деталей, простотой обслуживания скважин и регулирования работы.

Условие работы газлифтного подъемника (газлифта) аналогично условию газлифтного фонтанирования можно записать

Gэф + R0 зак ≥ R0 (7.2)

По затрубному пространству газ с поверхности подается к башмаку НКТ, где смешивается с жидкостью, образуя ГЖС, которая поднимается на поверхность по подъемным трубам (НКТ). Закачиваемый газ добавляется к газу, выделяющемуся из пластовой жидкости. В результате смешения газа с жидкостью образуется ГЖС такой плотности, при которой имеющегося давления на забое скважины достаточно для подъема жидкости на поверхность. Точка ввода газа [1] в подъемные трубы (башмак) погружена под уровень жидкости на величину h; давление газа Р1 в точке его ввода в трубы пропорционально погружению h и связано с ним очевидным соотношением Р1=h·ρ·g. Давление закачиваемого газа, измеренное на устье скважины, называется рабочим давлением Рр. Оно практически равно давлению у башмака Р1 и отличается от него только на величину гидростатического давления газового столба ΔР1 и потери давления на трение газа в трубе ΔР2, причем ΔР1 увеличивает давление внизу Р1, а ΔР2 уменьшает. Таким образом,

 

или

(7.3)

В реальных скважинах ΔР1 составляет несколько процентов от Р1, а ΔР2 еще меньше. Поэтому рабочее давление Рр и давление у башмака Р1 мало отличаются друг от друга. Таким образом, достаточно просто определить давление на забое работающей газлифтной скважины по ее рабочему давлению на устье.

Применение воздуха способствует образованию в НКТ очень стойкой эмульсии, разложение которой требует ее специальной обработки поверхностно-активными веществами, нагрева и длительного отстоя. Применение углеводородного газа, хотя и способствует образованию эмульсии, но такая эмульсия нестойкая и разрушается (расслаивается) часто простым отстоем без применения дорогостоящей обработки для получения чистой кондиционной нефти. Это объясняется отсутствием кислорода или его незначительным содержанием в используемом углеводородном газе и химическим родством газа и нефти, имеющих общую углеводородную основу. Кислород, содержащийся в воздухе, способствует окислительным процессам и образованию на глобулах воды устойчивых оболочек, препятствующих слиянию воды, укрупнению глобул и последующему их оседанию при отстое. Причем отсепарированный газ газлифтной скважины при бурном перемешивании его с нефтью при движении по НКТ обогащается бензиновыми фракциями. При физической переработке такого газа на газобензиновых заводах получают нестабильный бензин и другие ценные продукты.

Переработанный (осушенный) на газобензиновых заводах газ снова используется для работы газлифтных скважин после его предварительного сжатия до необходимого давления на компрессорных станциях промысла.

Единственным достоинством эрлифта является неограниченность источника воздуха как рабочего агента для газожидкостного подъемника. Для работы газлифтных скважин используется углеводородный газ, сжатый до давления 4 – 10 МПа. Источниками сжатого газа обычно бывают либо специальные компрессорные станции, либо компрессорные газоперерабатывающих заводов, развивающие необходимое давление и обеспечивающие нужную подачу. Такую систему газлифтной эксплуатации называют компрессорным газлифтом. Системы, в которых для газлифта используется природный газ из чисто газовых или газоконденсатных месторождений, называют бескомпрессорным газлифтом.

Существует система газлифтной эксплуатации, которая называется внутрискважинным газлифтом. В этих системах источником сжатого газа служит газ газоносных пластов, залегающих выше или ниже нефтенасыщенного пласта.

В таких случаях газоносный горизонт изолируется от нефтеносного пласта одним или двумя пакерами (сверху и снизу), и газ вводится в трубы через штуцерное устройство, дозирующее количество газа, поступающего в НКТ.

Внутрискважинный газлифт исключает необходимость предварительной подготовки газа, но вносит трудности в регулировку работы газлифта. Этот способ оказался эффективным средством эксплуатации добывающих скважин на нефтяных месторождениях Тюменской области, в которых над нефтяными горизонтами залегают газонасыщенные пласты с достаточными запасами газа и давления для устойчивой и продолжительной работы газлифта.


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.