
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Топ:
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
Интересное:
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Для панельных данных типична ситуация, когда число объектов достаточно велико. Поэтому, применяя непосредственно метод наименьших квадратов к уравнению (1), при оценивании параметров можно столкнуться с вычислительными проблемами. Их можно преодолеть, исключая из рассмотрения индивидуальные эффекты
. При этом мы понижаем размерность задачи с
до
.
Наиболее простой способ – переход в уравнении (1) к средним по времени величинам:
(2)
где
Вычитая почленно (2) из (1), получаем:
(3)
Данная модель уже не зависит от эффектов . По существу, это уравнение (1), записанное в отклонениях от индивидуальных средних по времени.
Оценка параметров модели
Применяя обычный метод наименьших квадратов к уравнению (3), мы получим оценки
(4)
Эти оценки называются внутригрупповыми оценками (within estimator) или оценками с фиксированным эффектом (fixed effect estimator).
Условия 1)-2), наложенные на модель, гарантируют несмещённость и состоятельность оценок с фиксированным эффектом.
В качестве оценок индивидуальных эффектов можно взять
.
Эти оценки являются несмещёнными и состоятельными для фиксированного при
Из формулы (4) вытекает выражение для матрицы ковариации оценки :
.
Как и в обычной линейной модели, в качестве оценки дисперсии можно взять сумму квадратов остатков регрессии, деленную на число степеней свободы:
.
При достаточно слабых условиях регулярности оценки с фиксированным эффектом являются асимптотически нормальными (при или при
), поэтому можно пользоваться стандартными процедурами (
-тесты,
-тесты) для проверки гипотез относительно параметров
.
Недостатки модели панельных данных с фиксированными эффектами
В панельных данных среди независимых переменных могут быть такие, которые не меняются во времени для каждого объекта. Например, при анализе заработной платы в число факторов часто включают пол или расовую принадлежность. Модель с фиксированным эффектом не позволяет идентифицировать соответствующие таким переменным коэффициенты. Формально это объясняется тем, что в уравнении (3) один или несколько регрессоров равны нулю, и, следовательно, метод наименьших квадратов применять нельзя.
Модель панельных данных со случайными эффектами (random effect model) опирается на структуру панельных данных, что позволяет учитывать неизмеримые индивидуальные различия объектов. Эти отличия называются эффектами. В данной модели предполагается, что индивидуальные отличия носят случайный характер.
Описание модели панельных данных со случайными эффектами
Во введенных обозначениях модель панельных данных со случайными эффектами описывается уравнением
(1)
где – константа, а
– случайная ошибка, инвариантная по времени для каждого объекта.
Параметры модели: .
Основные предположения
Предположим, что выполнены следующие условия:
1. ошибки некоррелированы между собой по
и
,
,
;
2. ошибки некоррелированы с регрессорами
при всех
;
3. ошибки некоррелированы между собой по
,
,
;
4. ошибки некоррелированы с регрессорами
при всех
:
;
5. ошибки и
некоррелированы при всех
:
.
Оценка параметров модели
Модель со случайным эффектом (1) можно рассматривать как линейную модель, в которой ошибка имеет некоторую специальную структуру. Будем рассматривать модель:
(2)
Для получения оценок параметров можно применить обычный метод наименьших квадратов. Условия 1)-3) гарантируют несмещённость и состоятельность этих оценок. Однако ошибки в (2) не являются гомоскедастичными, поэтому для построения эффективных оценок можно воспользоваться обобщенным методом наименьших квадратов.
|
|
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!