Общие сведения и особенности работы термопар — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Общие сведения и особенности работы термопар

2017-06-04 67
Общие сведения и особенности работы термопар 0.00 из 5.00 0 оценок
Заказать работу

 

Стандартные таблицы для термоэлектрических термометров и классы допуска и диапазоны измерений приведены в ГОСТ Р 8.585-2001 «Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования». Эти данные приводятся также в разделе справочник.

Наиболее точные термопары – с термоэлектродами из благородных металлов: платинородий-платиновые ПП (тип S (Pt-10%Rh / Pt) (тип R (Pt-13%Rh / Pt), платинородий-платинородиевые ПР (тип В (Pt-30%Rh / Pt-6%Rh)). Преимуществом является значительно меньшая термоэлектрическая неоднородность, чем у термопар из неблагородных металлов, устойчивость к окислению, вследствие чего высокая стабильность. Преимуществом термопары типа ПР также является практически нулевой выходной сигнал при температурах вплоть до 50 °С, таким образом устраняется необходимость термостатирования холодных спаев. Недостатком является высокая стоимость и малая чувствительность (около 10 мкВ/К при 1000 °С). Хотя платинородиевые термопары превосходят по точности и стабильности термопары из неблагородных металлов и сплавов, минимальная расширенная неопределенность результата измерения температуры в диапазоне до 1100 °С составляет 0,2-0,3 °С. Причины нестабильности термопар связаны с загрязнением, окислением и испарением материалов термоэлектродов. При температурах 500-900 °С формируется стабильный окисел родия. Недостаток родия изменяет состав платино-родиевого термоэлектрода, что приводит к изменению зависимости ЭДС от температуры и к возникновению термоэлектрических неоднородностей.

В последние годы за рубежом были разработаны и исследованы термопары из чистых металлов: золото-платиновые и платина-палладиевые. По результатам опубликованных исследований можно сделать вывод о их лучшей стабильности и точности по сравнению с платинородий-платиновыми термопарами (см. в разделе публикации "Термопары из чистых металлов")

Термопары из неблагородных металлов очень широко используются во всех отраслях промышленности. Они дешевы и просты в обращении, устойчивы к вибрациям, могут выпускаться во взрывозащищенном исполнении. Особенно удобны в обращении кабельные термопары, электроды которых заключены в специальный герметичный гибкий кабель с минеральной изоляцией. Такая конструкция позволяет расположить термопару в самых сложных конструктивных узлах объекта. Преимуществом термопар также является высокая чувствительность. Существенным недостатком является образование термоэлектрической неоднородности в зоне максимального градиента температур, что может привести к ошибке в градуировке более 5 °С. Этот недостаток делает очень сомнительной саму возможность периодической поверки термопар в лабораторных условиях и диктует необходимость поверять термопары из неблагородных металлов на месте их рабочего монтажа. Наименьшая термоэлектрическая неоднородность характерна для термопары нихросил/нисил (тип N). Одной из существенных составляющих неопределенности измерений термопарами является учет температуры холодных спаев или точность компенсации спаев в цифровых преобразователях.

Для измерения высоких температур до 2500 °С используют вольфрам-рениевые термопары. Особенностью их использования является необходимость устранения окислительной атмосферы, разрушающей проволоку. Для вольфрам-рениевых термопар используют специальные герметичные конструкции чехлов, заполненные инертным газом, а также танталовые и молибденовые чехлы с неорганической изоляцией из оксида бериллия и оксида магния. Одно из важных применений вольфрам-рениевых термопар состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.

Особенностью работы с термопарами является применение стандартных удлинительных и компенсационных проводов. Провода позволяют передавать сигнал с термопары на сотни метров к измерительному прибору, внося минимальную потерю точности. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды термопары, но с более низкими требованиями по качеству материалов. Компенсационные провода изготавливаются из совершенно других материалов, чем термоэлектроды и применяются для термопар из благородных металлов. Так, для термопары ПР в качестве компенсационной может использоваться медная проволока. Применение компенсационных проводов может стать доминирующим источником неопределенности измерения температуры в промышленности, если разность температур двух концов провода существенна. Так, например, если для термопары типа S используется компенсационный провод, температура которого изменяется от 23 °С (головка термопары) до 0 °С (лед), то возникает дополнительная ЭДС около 15 мкВ, что приведет к ошибке в измерении 1,4 °С для температуры 900 °С. Стандарт МЭК 60584-3 на компенсационные провода(Thermocouples - Part 3: Extension and compensating cables - Tolerances and identification systems) введен в обращение в апреле 2008 г. (см. раздел Стандарты МЭК).

 

Рекомендации по выбору типа термопары

 

 

Тип J (железо-константановая термопара):

1. Не рекомендуется использовать ниже 0 °С, т.к. конденсация влаги на железном выводе приводит к образованию ржавчины;

2. Наиболее подходящий тип для разряженной атмосферы;

3. Максимальная температура применения – 500 °С, т.к выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.

4. Показания повышаются после термического старения.

5. Преимуществом является также невысокая стоимость.

Тип Е (хромель-константановая термопара):

1. Преимуществом является высокая чувствительность.

2. Термоэлектрическая однородность материалов электродов.

3. Подходит для использования при низких температурах.

Тип Т (медь-константановая термопара):

1. Может использоваться ниже 0 °С;

2. Может использоваться в атмосфере с небольшим избытком или недостатком кислорода;

3. Не рекомендуется использование при температурах выше 400 °С;

4. Не чувствительна к повышенной влажности;

5. Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.

Тип К (хромель-алюмелевая термопара):

1. Широко используются в различных областях от – 100 °С до +1000 °С (рекомендуемый предел, зависящий от диаметра термоэлектрода);

2. В диапазоне от 200 до 500 °С возникает эффект гистерезиса, т.е показания при нагреве и охлаждении могут различаться. Иногда разница достигает 5 °С;

3. Используется в нейтральной атмосфере или атмосфере с избытком кислорода;

4. После термического старения показания снижаются;

5. Не рекомендуется использовать в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция), термопара при этом изменяет ТЭДС и показывает заниженную температуру;

6. Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.

Тип N (нихросил-нисиловая термопара)

1. Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.

2. Рекомендуемая рабочая температура до 1200 °С (зависит от диаметра проволоки).

3. Кратковременная работа возможна при 1250 °С;

4. Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К);

5. Считается самой точной термопарой из неблагородных металлов.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.