Дистанционные методы контроля — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Дистанционные методы контроля

2022-12-20 38
Дистанционные методы контроля 0.00 из 5.00 0 оценок
Заказать работу

Контактные методы наблюдений и контроля за состоянием природной среды дополняются неконтактными (дистанционными), основанными на использовании двух свойств зондирующих полей (электромагнитных, акустических, гравитационных): осуществлять взаимодействия с контролируемым объектом и переносить полученную информацию к датчику. Зондирующие поля обладают широким набором информативных признаков и разнообразием эффектов взаимодействия с веществом объекта контроля. Принципы функционирования средств неконтактного контроля условно подразделяют на пассивные и активные. В первом случае осуществляется приём зондирующего поля, исходящего от самого объекта контроля, во втором производится приём отражённых, прошедших или переизлученных зондирующих полей, созданных источником.

Неконтактные методы наблюдения и контроля представлены двумя основными группами методов: аэрокосмическими и геофизическими. Основными видами аэрокосмических методов исследования являются оптическая фотосъёмка, телевизионная, инфракрасная, радиотепловая, радиолокационная, радарная и многозональнаясъёмка.Неконтактный контроль атмосферы осуществляется с помощью радиоакустических и лидарных методов.Вначале радиоволны были использованы для анализа состояния ионосферы (по отражению и преломлениюволн), затем сантиметровые волны применили для исследования осадков, облаков, турбулентности атмосферы.Область использования радиоакустических методов ограничена сравнительно локальными объёмами воздушной среды (около 1–2 км в радиусе) и допускает их функционирование в наземных условиях и на бортувоздушных судов.Одной из причин появления отражённого акустического сигнала являются мелкомасштабные температурные неоднородности, что позволяет контролировать температурные изменения, профили скорости ветра, верхнюю границу тумана.

Принцип лидарного (лазерного) зондирования заключается в том, что лазерный луч рассеивается молекулами, частицами, неоднородностями воздуха; поглощается, изменяет свою частоту, форму импульса, в результате чего возникает флюоресценция, которая позволяет качественно или количественно судить о таких параметрах воздушной среды, как давление, плотность, температура, влажность, концентрация газов, аэрозолей, параметры ветра. Преимущество лидарного зондирования заключается в монохроматичности, когерентности и возможности изменять спектр, что позволяет избирательно контролировать отдельные параметры воздушной среды. Главный недостаток – ограниченность потолка зондирования атмосферы с Земли влиянием облаков. Основными методами неконтактного контроля природных вод являются радиояркостной, радиолокационный, флюоресцентный. Радиояркостной метод использует диапазон зондирующих волн от видимого до метрового для одновременного контроля волнения, температуры и солёности. Радиолокационный (активный) метод заключается в приёме и обработке (амплитудной, энергетической, частотной, фазовой, поляризационной, пространственно-временной) сигнала, отражённого от взволнованной поверхности. Для дистанционного контроля параметров нефтяного загрязнения водной среды (площадь покрытия, толщина, примерный химический состав) используется лазерный отражательный, лазерный флюоресцентный методы и фотографирование в поляризованном свете. Флюоресцентный метод основан на поглощении оптических волн нефтью и различии спектров свечения легких и тяжёлых фракций нефти. Оптимальный выбор длины возбуждающей волны позволяет по амплитуде и форме спектров флюоресценции идентифицировать типы нефтепродуктов.

Геофизические методы исследований применяются для изучения состава, строения и состояния массивов горных пород, в пределах которых могут развиваться те или иные опасные геологические процессы. К ним относятся: магниторазведка, электроразведка, терморазведка, визуальная съёмка (фото-, теле-), ядерная геофизика, сейсмические и геоакустические и другие методы.

В программу наземных инструментальных геофизических наблюдений в системе мониторинга включаются:

• районы размещения дорогостоящих, ответственных и особо опасных объектов промышленного и гражданского строительства;

• промышленные зоны, в которых ведётся добыча полезных ископаемых, откачка (закачка) подземных вод, рассолов (промышленных стоков), места складирования отходов и т.п.;

• территории, занятые топливно-энергетическими комплексами;

• территории с мульдами оседания земной поверхности;

• территории занятые промышленными предприятиями, на которых выполняются прецизионные работы в различных сферах производственной деятельности;

• территории с неблагоприятной и напряжённой экологической обстановкой; • территории расположения уникальных архитектурных сооружений и исторических памятников.

Основным видом непосредственного изучения опасных геологических процессов и явлений является комплексная инженерно-геологическая съёмка (ИГС). Методика комплексной ИГС к настоящему времени достаточно хорошо отработана. Сейчас практически вся территория Российской Федерации покрыта государственной среднемасштабной съёмкой (1: 200 000; 1: 100 000 и в ряде случаев 1: 50 000). Методы получения инженерно-геологической информации в ходе съёмки хорошо разработаны и включают в себя комплекс подготовительных, полевых, лабораторных исследований. В ходе ИГС полевое изучение базируется на традиционных маршрутах геологических, топографогеодезических и ландшафтно-индикационных исследованиях, горнопроходческих и буровых разведочных работах, полевом опробовании горных пород, динамическом и статическом зондировании и т.д. В этот комплекс работ включаются и специальные аэрокосмические, геофизические, математические, геодезические, гидрогеологические наблюдения.

С 1990-х гг. в России проводились организационные работы в области экологического мониторинга с использованием космических средств, а также формирования инфраструктуры региональных центров сбора и приёма космической информации. В России существует несколько космических систем дистанционного зондирования территории России, применимых для наблюдений за развитием опасных природных процессов и явлений. Основными и наиболее доступными для использования в ЕГСЭМ из них являются системы дистанционного зондирования «Метеор», «Океан», «Ресурс0», «Ресурс-2» и др.

Изображения со спутников передаются на Землю в реальном масштабе времени в диапазоне 1700 МГц. Возможность свободного приёма спутниковой информации наземными станциями обеспечивается Всемирной метеорологической организацией согласно концепции «Открытого неба». На наземных станциях приёма спутниковой информации производится приём, демодуляция, первичная обработка и подготовка спутниковых данных к вводу в персональный компьютер станции. На территории России в последнее десятилетие активно развивается сеть станций приёма данных от спутников NOAA (американские метеорологические спутники), образующая наземную инфраструктуру регионального экологического мониторинга: в Москве (Институт космических исследований РАН, ВНИИ ГОЧС МЧС); Красноярске (Институт леса СО РАН); Иркутске (Институт солнечно-земной физики СОРАН); Салехарде (Госкомитет по охране окружающей среды ЯмалоНенецкого автономного округа); Владивостоке (Институт автоматики и процессов управления ДВО РАН). Спутниковые данные дистанционного зондирования позволяют решать следующие задачи контроля состояния среды:

• определение метеорологических характеристик: вертикальные профили температуры, интегральные характеристики влажности, характер облачности;

• контроль динамики атмосферных фронтов, ураганов, получение карт крупных стихийных бедствий;

• определение температуры подстилающей поверхности, оперативный контроль и классификация загрязнений почвы и водной поверхности;

• обнаружение крупных или постоянных выбросов промышленных предприятий;

• контроль техногенного влияния на состояние лесопарковых зон;

• обнаружение крупных пожаров и выделение пожароопасных зон в

лесах;

• выявление тепловых аномалий и тепловых выбросов крупных производств и ТЭЦ в мегаполисах;

• регистрация дымных шлейфов от труб;

• мониторинг и прогноз сезонных паводков и разливов рек;

• обнаружение и оценка масштабов зон крупных наводнений;

• контроль динамики снежных покровов и загрязнений снежного покрова в зонах влияния промышленных предприятий.


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.