Методы качественного анализа — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Методы качественного анализа

2022-11-14 23
Методы качественного анализа 0.00 из 5.00 0 оценок
Заказать работу

Наиболее распространенным методом в решении задач качественного анализа является метод главных компонент (МГК), позволяющий эффективно сжать многомерные данные и представить полезную химическую информацию в более компактном виде, удобном для визуализации и интерпретации [16].

В методе главных компонент в n-мерном пространстве строится эллипсоид, наилучшим образом охватывающий данные измерений. Затем эти данные переносятся в другую систему координат, осями которой являются главная (ГК1) и перпендикулярная ей (ГК2) оси эллипсоида, а центром – среднее арифметическое из всех измерений. Координатами любой точки (экспериментальные данные) являются ее проекции на новые оси. При решении задач классификации элементы одного класса располагаются в указанных координатах на плоскости главных компонент достаточно кучно, пространственно отделенные от других элементов. Этот метод дает хорошую визуализацию результатов классификации, однако следует помнить, что расстояния между точками на проекциях не имеют физического смысла, что затрудняет получение ответа на вопрос, чем обусловлена классификация объектов анализа. Преимущество метода – возможность обработки большого числа экспериментальных данных (токи, измеряемые через определенные промежутки времени на протяжении всей вольтамперометрической кривой), что позволяет классифицировать объект анализа с использованием минимального количества электродов (вплоть до регистрации только одной вольтамперограммы). Для повышения размерности сигнала-отклика применяют импульсные варианты ВА (нормальная и дифференциальная импульсная вольтамперометрия, квадратно-волновая и переменнотоковая вольтамперометрия и др.) или модулируют сигнал импульсами небольшой амплитуды.

Задачи классификации можно разделить на две большие группы. К первой относятся так называемые задачи без обучения (unsupervised). Они названы так, потому, что в них не используется обучающий набор и их можно рассматривать как разновидность исследовательского анализа. Задачи второй группы – классификация с обучением (supervised), называются также задачами дискриминации. В них применяется обучающий набор образцов, про которых имеется априорная информация о принадлежности к классам. Методы решения задач классификации без обучения основаны, главным образом, на МГК декомпозиции с последующим анализом расстояний между классами, построением дендрограмм, использованием нечетких множеств и т.п. Однако, в тех случаях, когда возможно проведение дискриминации, т.е. классификации с обучением, этим методам следует отдавать предпочтение. Обучающий набор образцов используется для построения модели классификации, т.е. набора правил, с помощью которых новый образец может быть отнесен к тому или другому классу. После того, как модель (или модели) построена, ее необходимо проверить, используя методы тест- или кросс-валидации, и определить насколько она точна. При успехе проверки, модель готова к практическому применению, т.е. к предсказанию принадлежности новых образцов. В аналитической химии классификация применяется к наборам мультиколлинеарных данных (спектры, хроматограммы), поэтому дискриминационная модель почти всегда многомерна и основана на соответствующих проекционных подходах – МГК, ПЛС.

Одним из самых популярных подходов является метод независимого моделирования аналогий классов SIMCA  [16], разработанный С. Волдом. В основе метода SIMCA лежит предположение о том, что все объекты в одном классе имеют сходные свойства, но и обладают индивидуальными особенностями. При построении дискриминационной модели необходимо учитывать только сходство, отбрасывая особенности как шум. Для этого каждый класс из обучающего набора независимо моделируется методом главных компонент с разным числом главных компонент A. После этого вычисляются расстояния между классами, а также расстояния от каждого класса до нового объекта.В качестве таких метрик используются две величины. Расстояние d от объекта до классавычисляется как среднеквадратичное значение остатков e, возникающих при проецировании объекта на класс

Эта величина сравнивается со среднеквадратичным остатком внутри класса

Вторая величина определяет расстояние от объекта до центра класса, и она вычисляется как размах (квадрат расстояния Махаланобиса).

Здесь τa – это проекция нового образца (счет) на главную компоненту a, а t a – это вектор, содержащий счета всех обучающих образцов в классе


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.