Сравнительные характеристики Солнца — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Сравнительные характеристики Солнца

2022-10-10 24
Сравнительные характеристики Солнца 0.00 из 5.00 0 оценок
Заказать работу

(по П. Куликовскому)

 

Звездная визуальная величина … —26mm,80 ± 0,03

Абсолютная фотовизуальная звездная величина … +4m,96

Спектральный класс … dG2

 

Буква m в показателе степени называется звездной величиной, определяющей блеск звезды.

Буква d перед спектральным классом говорит о том, что наша звезда — карлик.

Конечно, это далеко не все характеристики. Да и выбраны они автором достаточно произвольно.

Но, после того как они приведены, не худо бы и пояснить, чем они так уж важны в книге, посвященной вопросам космогонии. Именно космогонии, а не астрофизики и не звездной астрономии. А вот чем.

Минимальный возраст — это время, за которое наше светило практически не менялось. Порукой тому свидетельство земных пластов.

Средняя плотность — 1,4 г/см3 — говорит о том, что солнечный шар состоит из довольно разреженной субстанции.

А ускорение силы тяжести — в 28 раз большее, чем на Земле, — свидетельствует о внушительном внешнем воздействии. И сразу возникает вопрос о природе небесного тела, которое может существовать так долго и в таких условиях. Какое оно? Твердое? Нет! Плотность мала. Жидкое? Тоже нет! Может быть, газообразное? А это очень может быть. Ведь говорят же физики, что от немедленного сжатия наше светило может удержать только внутреннее тепловое давление. Возникает же оно за счет теплового движения частиц солнечного вещества. Значит, Солнце — газовый шар, да еще и хорошо нагретый.

Смотрите, какой необыкновенно оригинальный вывод нам удалось сделать…

Прекрасно! Теперь можно задуматься и о тех реакциях, которые столь долго и стабильно поддерживают жизнь нашего светила, а в том числе и наше с вами бренное существование. Предположение Г. Гельмгольца об энергии за счет сжатия не годится. Солнце продержалось бы на ней в существующем состоянии не более нескольких миллионов лет. Этого мало. Не стоит говорить и о химической энергии. Тут срок еще меньше. Тогда какая же?

В неофициальной части истории физики сохранился один эпизод. Рассказывают, что однажды два приятеля — развеселые студенты-физики из славного Геттингенского университета жарким солнечным днем гуляли по тенистому парку. Переходя от дерева к дереву, они со смехом говорили о том, что в такую погоду не исключен солнечный удар кое у кого из профессоров, что само по себе не так уж и плохо, ибо тогда завтра отменят лекции. Однако настоящий физик даже о солнечном ударе не может говорить, забывая о физике. Сегодня трудно восстановить, кому из студентов первому пришла в голову идея об истинном источнике энергии пылающего над головой Солнца. Во всяком случае, вряд ли кто обвинит нас, если мы домыслим сцену…

 

— Клянусь рефератом, который нужно завтра представить, это… — Фриц Хоутерманс, а именно так звали одного из студентов, показал рукой на Солнце, — это не костер из буковых поленьев.

— Пожалуй, — подхватил его приятель, — он бы давно погас, и сегодня не было бы такой сумасшедшей жары.

Приятеля Ф. Хоутерманса звали Аткинсон. Он только что приехал из Кембриджа, где все были увлечены удивительными опытами Э. Резерфорда по атомным превращениям. Может быть, также в шутку высказался он за то, что кавендишские атомные превращения, рождающие столь горячие споры, и жаркие процессы внутри Солнца должны иметь какую-то связь! Ф. Хаутерманс подхватил идею.

— Конечно, легкие элементы сливаются, образуют более тяжелые, а освободившаяся энергия печет нам головы…

Может быть, именно с этого случайного разговора и началась серьезная работа обоих физиков над проблемой теории термоядерных процессов в недрах Солнца. Над ней сломано было немало зубов и копий. Предположить, что энергия Солнца обязана слиянию атомов водорода и образованию более тяжелого гелия, было слишком мало. Следовало доказать, что эта гипотеза имеет под собой твердую почву. Ведь для синтеза легких ядер нужна чудовищная температура. Обеспечивает ли Солнце требуемые условия при каких-то 6 тысячах градусов на поверхности?

«Что значит каких-то? — вправе обидеться читатель, знакомый с достижениями техники электро- и газовой сварки. — Нам бы такую!» Так-то оно так. Нам-то бы неплохо, а вот термоядерным реакциям ни к чему. «Термояду» при 6 тысячах градусов холодно. Реакции не желают при этом проистекать. А как же быть с источником солнечной энергии?..

Тут к этой проблеме совсем с другого бока подобрался Артур Стенли Эддингтон, замечательный английский астроном, астрофизик, сделавший очень много как в самой науке, так и в ее популяризации.

После того как Петр Николаевич Лебедев открыл и измерил световое давление, никто из физиков в общем-то не знал, что с этим давлением делать. Многие считали, что столь ничтожная сила не может играть существенной роли в жизни космических небесных объектов. Но А. Эддингтон построил именно на ней свою теорию равновесия звезд. Он одним из первых пришел к мысли, что там, где энергия излучается в космических масштабах, световое давление, вкупе с обычным газовым давлением, могут уравновесить гигантскую силу тяжести, развиваемую огромной массой звезды. Работая над своей теорией, А. Эддингтон подумал: а не влияет ли масса вообще на физическое состояние раскаленных газовых шаров, которые мы называем звездами? Эта мысль окрепла, превратилась в убеждение в конце концов, подтвержденная теорией и наблюдениями, стала важным космогоническим законом.

Не стоит перечислять все научные работы президента Королевского астрономического общества А. Эддингтона. Многие из них выходят за рамки, ограниченные темой нашей книги. Для нас важно знать, что, пользуясь выведенными соотношениями и зная массу, а следовательно, и тяготение Солнца, А. Эддингтон рассчитал давление, необходимое для уравновешивания сил тяготения, а затем и температуру в недрах нашего светила, способную обеспечить требуемое давление. Получилась поистине астрономическая цифра в 15 миллионов градусов. Читатель, даже привыкший к масштабности шкалы цифр наших дней, поневоле должен затаить дыхание. Особенно если учесть, что согласно последним расчетам уже наших дней эта цифра поднялась еще выше и перевалила за 21 миллион.

Расчеты А. Эддингтона примирили физиков с астрономами.

Теперь тепла хватало, чтобы «высидеть» реакцию термоядерного синтеза. Оставалось только выбрать подходящий тип этой реакции. Дело в том, что написать их можно довольно много. Но поскольку все данные спектрального анализа в один голос твердили, что Солнце почти целиком состоит из водорода и только чуть-чуть из гелия, то немецкий физик Ганс Альбрехт Бете, работавший с 1939 года в США, попробовал приспособить для Солнца реакции термоядерного синтеза гелия из водорода через промежуточные превращения. Написал. Проверил. Вроде подходило. Скорости, с которыми реакции протекали, вполне обеспечивали общее количество излучения. Тогда Г. Бете переписал свои уравнения и скромно признался коллегам, что, похоже, он открыл единственно пока возможный источник солнечной энергии.

Коллеги удивились тому, что это не пришло в голову им самим. Коллеги восторгались тем, что в работе Г. Бете остались возможности дальнейшего совершенствования теории и бросились наперегонки реализовать эти возможности.

Сегодня представления Г. Бете лежат в основе классической теории звездной эволюции. Они разработаны настолько тщательно, что нужно быть очень смелым человеком, чтобы поднять голос против. Многие предсказания теории получили подтверждение наблюдателей. А сам Г. Бете в 1967 году получил Нобелевскую премию.

Теперь самое время задать главный вопрос, после которого должны исчезнуть последние сомнения: «А как эксперимент, непосредственный эксперимент, подтвердил гипотезу Г. Бете? Ведь водородные бомбы взрывались над Землей уже не раз и над, и под…»

Увы! Как говорится, «прямых экспериментальных доказательств термоядерной природы солнечной энергии пока нет». Более того, теоретики уже рассчитали не одну, а несколько непротиворечивых моделей Солнца. Факт довольно удручающий. Лучше бы одну. Но для этого нужно твердо знать, что у Солнца внутри. А пока, пока какая бы то ни было точная информация о солнечном ядре отсутствует. Ведь и герр Г. Бете, предлагая свою глубокую теорию, основывался только на «поверхностных» данных. Имеются, конечно, в виду данные спектрального анализа. Чего бы, кажется, не отдали астрофизики за то, чтобы хоть одним глазом заглянуть внутрь нашего светила…

Если Г. Бете прав, то обстановку внутри Солнца представить себе можно. Ядерные реакции в центре порождают мощное гамма-излучение, которое, пробиваясь сквозь толщу солнечного вещества, преобразуется в более длинноволновое — рентгеновское. Однако недра нашего светила одинаково непрозрачны как для гамма-, так и рентгеновского излучения. И потому последнее, поднимаясь все выше и ближе к поверхности, претерпевает новое превращение — переходит в еще более длинноволновое излучение видимого света. Лишь после этого лучи покидают Солнце и через восемь с небольшим минут любезно предоставляют земным наблюдателям всю заложенную в них информацию. Но только о той области, которая их породила, — о поверхности Солнца.

Как же тут быть? Световые лучи не годятся, радиоизлучение и рентгеновские лучи, которые приходят от нашего светила к нам, тоже не несут информации о глубоких недрах. И все-таки есть выход! Нутряные реакции порождают еще один вид излучения — нейтринное. А для нейтрино что Солнце, что Земля, что пустой космос — все едино. Они почти беспрепятственно сквозь них проходят, ни с чем не реагируя. Может быть, попробовать поймать их?

В 1964 году американский физик Р. Дэвис приступил к таким опытам. Работники сферы бытового обслуживания с ума бы посходили от зависти, знай они, сколько канистр с бесцветной жидкостью, применяемой для чистки одежды, были опущены в одну из шахт отдаленных золотых приисков. Однако Р. Дэвис не собирался устраивать подпольную, точнее, подземную химчистку. Громадная цистерна, наполненная тетрахлорэтиленом, должна была задерживать солнечные нейтрино. А под землю полезли физики, чтобы избежать ненужного фона от других частиц.

Идея эксперимента заключалась в поимке солнечных нейтрино, которые могли бы рассказать о процессах внутри Солнца. К сожалению, несмотря на три года работы и непрерывного совершенствования методики измерений нейтринный детектор (или «нейтринный телескоп») упрямо показывал поток частиц в десять раз меньший, чем ожидалось по теоретическим расчетам. Было от чего прийти в уныние. Говорят, желая утешить Р. Дэвиса, рабочие говорили: «Не огорчайтесь, док. Нынешнее лето было таким облачным…» Однако шутки помогали мало. Налицо было вопиющее противоречие опыта и признанной теории. Теоретики, правда, недолго унывали. Они тут же предложили множество спасительных гипотез, среди которых, конечно, были такие, что таили в себе нарушения и некоторых фундаментальных законов природы либо исходили из столь ультрановых допущений о существовании явлений, которых никто и никогда не наблюдал. Авторов этих работ не смущало, что такого рода гипотезы среди серьезных специалистов успехом не пользовались.

Простой и многообещающий путь к решению проблемы нейтринного дефицита предложил американский астрофизик У. Фаулер из Калифорнийского технологического института. Он обратил внимание коллег прежде всего на то, что между потоком нейтрино и световым потоком (потоком фотонной светимости, если выражаться научно) существует в принципе большое различие. Частицы нейтрино не задерживаются солнечным веществом и потому, родившись в недрах светила, они через восемь с небольшим минут уже могут быть в шахте в цистерне с жидкостью для химчистки. И совсем другое дело — свет. Пока та же волна термоядерной энергии, породившая только что пойманные нами нейтрино, доберется из центра Солнца до его поверхности и родит фотоны, пройдет довольно много времени. Физики называют его «временем Кельвина — Гельмгольца». О длительности его единой точки зрения нет. У. Фаулер считает его равным примерно тридцати миллионам лет. Другие специалисты убеждены, что оно порядка на три меньше… Но так или иначе, а появление фотонов должно довольно сильно отставать от появления нейтрино, рожденных одним и тем же процессом.

Конечно, солнышко наше — звезда довольно спокойная («тьфу, тьфу, чтобы не сглазить»). Но и у него в центре могут происходить перемены. Какие? У. Фаулер говорит, например: перемешивание. Да, довольно быстрое перемешивание внутренних горячих и наружных более холодных слоев. Как только оно произойдет, температура в центре Солнца падает. А количество высокоэнергетических нейтрино очень сильно зависит от температуры. Значит, и поток нейтрино резко сокращается. Со временем уменьшится, конечно, и световой поток. Но далеко не сразу…

Получается, что, произойди такое перемешивание в солнечном ядре, через считанные минуты земные приборы должны зафиксировать уменьшение потока нейтрино. А свет от Солнца еще будет долгое время литься нам на головы в неизменном количестве.

На страницах журнала, в котором У. Фаулер опубликовал свою гипотезу, еще не успела высохнуть типографская краска, а специалисты исследовательских групп США и Англии, в распоряжении которых были компьютеры и соответствующие программы для расчета процессов в звездах, уже принялись считать. Это говорит о том, что вопрос о солнечных реакциях стоит сейчас чрезвычайно остро.

Результаты расчетов пока оценивать рано. Во многом они расходятся друг с другом. Но то, что идея У. Фаулера плодотворна, сомнений нет ни у кого.

Правда, может возникнуть и такой вопрос: а почему бы вдруг недрам солнечным начать перемешиваться? Пока большинство астрофизиков на эту тему предпочитает не высказываться. Но вот совсем недавно в одной из статей, подписанной теоретиками из Кембриджского института Ф. Дилком и Д. Гу, гипотеза возможных причин перемешивания все-таки была предложена. Смысл ее заключался в том, что примерно за каждые 250 миллионов лет «спокойной жизни» в недрах Солнца накапливается слишком много «шлака». Химический состав вещества настолько изменяется под действием идущих там реакций, что происходит срыв, перемешивание, которое продолжается в течение примерно миллиона лет или меньше. Естественно, что после такого события, как после инфаркта, Солнцу нужно примерно до десяти миллионов лет на то, чтобы прийти в себя, после чего снова наступает период спокойной жизни.

Расчеты на ЭВМ показывают, что во время перемешивания должно происходить резкое увеличение потока нейтрино, после чего его интенсивность также резко спадает и потом в течение длительного срока постепенно нарастает снова, подбираясь к нормальному уровню.

А теперь представим себе, что сравнительно недавно в недрах Солнца произошло перемешивание. Наши приборы должны регистрировать уменьшившийся поток нейтрино. (Как это было в опыте Р. Дэвиса.) А свет? Свет мы еще долгие годы будем получать от Солнца прежний, пока результаты процесса перемешивания не скажутся на внешней оболочке светила. Но наступит время, когда его количество начнет уменьшаться, а поток нейтрино к той поре, возможно, восстановится.

Если согласиться с тем, что описанное явление в жизни Солнца периодически повторяется, а от количества света, как известно, зависит жизнь на Земле, то не поискать ли в прошлом каких-либо указаний на то, что такие или похожие явления уже были?

Оказалось, можно! Каждые 250 миллионов лет на поверхности нашей планеты наступают ледниковые периоды. Предположения о причинах, их вызывающих, существуют разные. Правда, увязывая Великие Обледенения с циклами перемешивания, специалисты наталкиваются на некоторые затруднения. Но тут виновата прежде всего неоднозначность «времени Кельвина — Гельмгольца», о котором мы уже говорили, хотя есть основания считать эти затруднения временными. А пока гипотеза «перемешивания» признается далеко не всеми, и проблемы, с нею связанные, находятся в состоянии дискуссии.

Пока теоретики спорят, развивающаяся наука на базе новой техники подбрасывает им все новые и новые факты. Наблюдая солнечные вспышки, экипаж «небесной лаборатории» «Скайлэб» обнаружил любопытное явление. Оказалось, что одна солнечная вспышка может вызвать другую на ином удаленном участке солнечной поверхности. При вспышке образуется гриб, подобный грибу ядерного взрыва. Во время одного из сеансов наблюдения астронавты неожиданно увидели в короне Солнца огромный «пузырь». Скорее всего что он возник как результат мощной вспышки на другой, невидимой с Земли солнечной стороне.

Фотографируя протуберанцы, астронавты «Скайлэба» и советские космонавты с «Салюта-4» обнаружили немало нового и пока не объяснимого в деятельности нашего светила. Однако пока мы должны констатировать, что никаких прямых экспериментальных подтверждений, что в его недрах бушует именно термоядерный пожар, нет! Но ведь все теории построены именно на этом предположении. Как же относиться к ним? Вот так и относиться, не принимая ничего на веру. Наука и вера — понятия несовместимые. Впрочем, тут уж автор начинает эксплуатировать рецепты «законов Паркинсона», гласящие, что «любое утверждение становится истиной после 1227 повторений». Почему именно после 1227? А попробуй, проверь…

 

Звезды в ассортименте

 

Ассортиментом в торговле называют набор различных видов и сортов товаров. Мы, конечно, торговать звездами не собираемся. Но в наши дни астрономических конкурсов в вузы торговли подобные термины особенно популярны. А мы с вами стремимся к доходчивости и занимательности.

Итак, для сравнения звезд между собой у нас есть один эталон — Солнце. Солнце — рядовая звезда. Солнце — мерило звезд. Но прежде чем начать работу по сравнению, неплохо, пожалуй, внести некоторые уточнения. Касаются они прежде всего блеска Солнца и звезд. Вот как выглядят, например, эти величины для нашего светила и ряда хорошо знакомых звезд северного неба:

Солнце –26m,8

Сириус –1m,43

Вега +0m,04

Полярная +2m,01

(Приведенные цифры могут несколько отличаться в зависимости от выбранного справочника.) Здесь буква m, как мы уже говорили, называется звездной величиной. Интервал в одну звёздную величину соответствует разнице в блеске двух объектов в 2,512 раза. Эта величина связана с психофизиологическим законом Вебера — Фехнера. Закон утверждает, что если раздражающий фактор меняется в геометрической прогрессии, то соответствующее ему ощущение изменяется в арифметической прогрессии. У нас раздражающий фактор и есть блеск звезды.

Пользуясь указанным соотношением, легко вычислить, что Полярная звезда кажется нам в шесть раз слабее Веги, Вега — в четыре раза слабее Сириуса и так далее. Однако видимый блеск звезд зависит не только от их действительной светимости, но и от расстояния. Поэтому для сравнения между собой по силе света звезды надо прежде всего отодвинуть на одинаковое стандартное расстояние. Оно выбрано в десять парсек, или 32,6 светового года. Приведенная к этому расстоянию звездная величина называется абсолютной — и обозначается буквой М.

А теперь по всем правилам отодвинем избранные четыре звезды на требуемое расстояние и посмотрим, что произойдет.

Батюшки! Как изменилась картина! На первое место вышла Полярная, которая стала светить куда ярче Сириуса. Обогнала его и Вега. А Солнце? Где наше солнышко? Оно почти незаметно из такой дали. Чтобы окончательно убедить читателя в относительности того, что он видит на небе, приведем еще один пример. В созвездии Орион есть звезда Ригель, по наблюдаемой яркости она занимает седьмое место. Но если сравнить ее истинную светимость с солнечной, окажется, что Ригель светит примерно в 23 тысячи Солнц.

По диаметру наше Солнце тоже весьма средненькая звездочка. Бывают и больше, даже весьма «и больше». Такие светила, как VV Цефея, S Золотой рыбы и Эпсилон Возничего имеют диаметры в тысячи раз больше, чем у Солнца. Можете вы представить себе звезду, диаметр которой равен поперечнику всей солнечной системы, ограниченной орбитой Плутона? При этом масса такого светила превышает массу нашего Солнца всего в несколько десятков раз, иначе звезда будет неустойчивой?

Значит, любой сверхгигант — это одна видимость. Чтобы не оказаться чересчур тяжелым, он имеет плотность, которая вполне может поспорить с тем высоким вакуумом, которого мы достигаем в электронных приборах, откачивая из них воздух на дорогостоящих насосах.

 

А встречаются и звезды-крошки с диаметром в 15–20 километров, но с массой, опять же ненамного отличающейся от массы Солнца. Подумайте сами, какая у них может быть плотность! Позже, когда разговор пойдет о сверхплотных телах, некоторые ошеломляющие цифры мы приведем…

Весьма существенно различаются звезды и по цвету. Это только невнимательному глазу кажутся они все одинаковыми. Астрономы разбили все существующие оттенки звездного цвета на 13 баллов и внимательно следят за их изменениями. Почему это так важно? Потому что цвет меняется соответственно температуре поверхности звезды. Из всех известных до сего дня наблюдаемых звезд самая холодная Хи из созвездия Лебедя. Цвет ее темно-красный, а температура порядка 1600 градусов по шкале Кельвина. Наиболее же горячими оказываются ядра планетарных туманностей; судя по голубовато-белому цвету, температура их доходит до 100 тысяч градусов.

Но самой главной характеристикой и температуры, и физико-химического состояния звезд являются их спектры поглощения. Вид звездного спектра зависит от многих причин. Тут и различия физических свойств звездной атмосферы из-за разных температур и давлений, и различия в химическом составе, влияют на спектр магнитные и электрические поля звезды, скорость ее вращения и многие другие причины. Очень важно, конечно, разобраться, что, как, от чего и насколько зависит, увидеть все важнейшие характеристики звезды как на ладони. Звездные спектры оказывают в этом деле ученым неоценимую услугу.

Сначала казалось, что безбрежный звездный океан вообще не может быть классифицирован в человеческом понимании. Но постепенно выяснилось, что большинство звезд можно объединить в сравнительно немногое количество классов. Сейчас принята так называемая гарвардская спектральная классификация. В ней десять классов, обозначенных латинскими буквами: O, B, A, F, G, K, M (N, R, S). Студенты, чтобы запомнить порядок следования спектральных классов, придумали мнемоническую фразу, действующую безотказно: «Один Бритый Англичанин Финики Жевал Как Морковь». Пройдут годы, можно забыть, чем отличается один спектральный класс от другого, но всегда при виде вышеуказанной последовательности букв магическая фраза вспыхивает в памяти, как огненные письмена на пиру валтасаровом. Правда, остаются еще три дополнительных класса холодных звезд N, R, S, но то ли на них фантазии не хватило, то ли слишком редко встречались они студентам на экзаменах. Скоро, однако, десяти классов оказалось мало. Пришлось каждый разбить еще на десять подклассов. Получилась длинная спектральная лесенка из сотни ступенек. Не все они заполнены равномерно. Есть пустые, а есть и такие, на которых как в автобусе в часы «пик».

Самые горячие звезды объединены в класс О. В следующих классах температура снижается.

В начале нашего столетия два астронома Эйнар Герпшпрунг в Дании и Г. Рессел, о котором мы уже говорили, независимо друг от друга составили любопытные зависимости. На диаграммах они отложили по горизонтальной оси спектральные классы, а по вертикали — светимости, или абсолютные звездные величины. Можно было ожидать, что все поле диаграммы равномерно засеется точками звезд. На деле же получилось совсем не так. Подавляющее большинство звезд расположилось длинным хвостом по диагонали от верхнего левого угла диаграммы к нижнему правому. Эту диагональ назвали главной последовательностью, на которой где-то в середине ее затерялось наше Солнце.

Прежде всего на диаграмме расположились сверхгиганты и яркие гиганты. В левой части главной последовательности собрались горячие голубые звезды. За ними по степени уменьшения температуры вправо и вниз расположились белые звезды, потом желтые карлики, ниже красные звезды, и, наконец, совсем уж тусклые красные карлики заняли нижний угол диаграммы.

Результаты этой работы вызвали в астрономическом мире прямо-таки ликование. Ну еще бы: ведь в те годы считалось, что главным источником энергии звезды является ее гравитационное сжатие. И диаграмма вроде бы подтверждала эту гипотезу. Сжимаясь, каждая звезда проходила все этапы эволюции: от протозвезды к мрачному багрово-красному сверхгиганту, потом, по мере дальнейшего разогрева, ее цвет становился желтым и звезда получала название желтого гиганта, после чего она становилась голубовато-белой, ослепительно яркой; и горячей. С этого момента энергии сжатия на нагрев хватать переставало, и звезда, перейдя в разряд желтых карликов, начинала потихоньку остывать, становясь последовательно желтым карликом, красным карликом и в конце концов черным карликом. На этом жизненный путь звезды заканчивался!

Очень стройная гипотеза и диаграмма «Г — Р», как стали ее называть специалисты по именам создателей, весьма наглядно представляла этот путь. Разогреваясь, звезда двигалась в верхней части диаграммы справа налево, пока не достигала начала диагонали. Затем, в процессе остывания, начинала скользить по главной последовательности вниз. Тут все находило объяснение; даже незначительный разброс масс. Действительно, если все стадии развития проходила одна и та же звезда, то не мудрено, что массы сверхгигантов немногим отличаются от масс карликов. Не то что объемы звезд, или их плотности…

Однако любая гипотеза хороша, пока не высказана вслух. Скоро обнаружилось, что существует немало звезд, не влезающих в главную последовательность. Диаграмма «Г — Р» распалась на ряд иных последовательностей. А там и эволюция звезд оказалась куда сложнее, чем спокойное сжатие и скольжение по главной последовательности от тепла к холоду. Звезды, сидящие совсем рядом на диагонали, вопреки ожиданиям не обнаруживали никаких родственных черт. Тут были и старые, заслуженные ветераны неба и молодые, недавно образовавшиеся светила. Потом А. Эддингтон, исполненный самых лучших намерений, решил хоть как-то рассчитать соотношение «масса — светимость». И пришел к неожиданному выводу, что карлики в принципе могут быть горячее гигантов.

В общем, что ни год, то все новые и новые несоответствия гипотезы «скользящей эволюции» лишали астрономов покоя. В конце концов от нее пришлось отказаться. Но диаграмма-то «Г — Р» была построена по данным наблюдения! И поэтому она осталась. Мало того, она по-прежнему играет чрезвычайно важную роль в астрофизике, став даже богаче содержанием и… увы, сложнее. Читатель сам увидит, как ее призрак будет стоять за многими рассуждениями, которые ожидают его в последующих разделах нашей книги Нет, в науке, как в образцовом хозяйстве, ничто не пропадает бесследно. Можете поверить.

 


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.042 с.