Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Классификация вычислительных систем

2017-05-20 554
Классификация вычислительных систем 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Одним из наиболее распространенных способов классификации ЭВМ является систематика Флинна (Flynn), в рамках которой основное внимание при анализе архитектуры вычислительных систем уделяется способам взаимодействия последовательностей (потоков) выполняемых команд и обрабатываемых данных. В результате такого подхода различают следующие основные типы систем [9, 22, 29, 31]:

· SISD (Single Instruction, Single Data) - системы, в которых существует одиночный поток команд и одиночный поток данных; к данному типу систем можно отнести обычные последовательные ЭВМ;

· SIMD (Single Instruction, Multiple Data) - системы c одиночным потоком команд и множественным потоком данных; подобный класс систем составляют МВС, в которых в каждый момент времени может выполняться одна и та же команда для обработки нескольких информационных элементов;

· MISD (Multiple Instruction, Single Data) - системы, в которых существует множественный поток команд и одиночный поток данных; примеров конкретных ЭВМ, соответствующих данному типу вычислительных систем, не существует; введение подобного класса предпринимается для полноты системы классификации;

· MIMD (Multiple Instruction, Multiple Data) - системы c множественным потоком команд и множественным потоком данных; к подобному классу систем относится большинство параллельных многопроцессорных вычислительных систем.

Следует отметить, что хотя систематика Флинна широко используется при конкретизации типов компьютерных систем, такая классификация приводит к тому, что практически все виды параллельных систем (несмотря на их существенную разнородность) относятся к одной группе MIMD. Как результат, многими исследователями предпринимались неоднократные попытки детализации систематики Флинна. Так, например, для класса MIMD предложена практически общепризнанная структурная схема [29, 31], в которой дальнейшее разделение типов многопроцессорных систем основывается на используемых способах организации оперативной памяти в этих системах (см. рис. 1.1). Данный поход позволяет различать два важных типа многопроцессорных систем - multiprocessors (мультипроцессоры или системы с общей разделяемой памятью) и multicomputers (мультикомпьютеры или системы с распределенной памятью).

Рис. 1.1. Структура класса многопроцессорных вычислительных систем

Далее для мультипроцессоров учитывается способ построения общей памяти. Возможный подход - использование единой (централизованной) общей памяти. Такой подход обеспечивает однородный доступ к памяти (uniform memory access or UMA) и служит основой для построения векторных суперкомпьютеров (parallel vector processor, PVP) и симметричных мультипроцессоров (symmetric multiprocessor or SMP). Среди примеров первой группы суперкомпьютер Cray T90, ко второй группе относятся IBM eServer p690, Sun Fire E15K, HP Superdome, SGI Origin 300 и др.

Общий доступ к данным может быть обеспечен и при физически распределенной памяти (при этом, естественно, длительность доступа уже не будет одинаковой для всех элементов памяти). Такой подход именуется как неоднородный доступ к памяти (non-uniform memory access or NUMA). Среди систем с таким типом памяти выделяют:

· Системы, в которых для представления данных используется только локальная кэш память имеющихся процессоров (cache-only memory architecture or COMA); примерами таких систем являются, например, KSR-1 и DDM;

· Системы, в которых обеспечивается однозначность (когерентность) локальных кэш памяти разных процессоров (cache-coherent NUMA or CC-NUMA); среди систем данного типа SGI Origin2000, Sun HPC 10000, IBM/Sequent NUMA-Q 2000;

· Системы, в которых обеспечивается общий доступ к локальной памяти разных процессоров без поддержки на аппаратном уровне когерентности кэша (non-cache coherent NUMA or NCC-NUMA); к данному типу относится, например, система Cray T3E.

Мультикомпьютеры (системы с распределенной памятью) уже не обеспечивают общий доступ ко всей имеющейся в системах памяти (no-remote memory access or NORMA). Данный подход используется при построении двух важных типов многопроцессорных вычислительных систем - массивно-параллельных систем (massively parallel processor or MPP) и кластеров (clusters). Среди представителей первого типа систем - IBM RS/6000 SP2, Intel PARAGON/ASCI Red, транспьютерные системы Parsytec и др.; примерами кластеров являются, например, системы AC3 Velocity и NCSA/NT Supercluster.

Следует отметить чрезвычайно быстрое развитие кластерного типа многопроцессорных вычислительных систем - современное состояние данного подхода отражено, например, в обзоре, подготовленном под редакцией Barker (2000). Под кластером обычно понимается (см., например, Xu and Hwang (1998), Pfister (1998)) множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления (single system image), надежного функционирования (availability) и эффективного использования (performance). Кластеры могут быть образованы на базе уже существующих у потребителей отдельных компьютеров либо же сконструированы из типовых компьютерных элементов, что обычно не требует значительных финансовых затрат. Применение кластеров может также в некоторой степени снизить проблемы, связанные с разработкой параллельных алгоритмов и программ, поскольку повышение вычислительной мощности отдельных процессоров позволяет строить кластеры из сравнительно небольшого количества (несколько десятков) отдельных компьютеров (lowly parallel processing). Это приводит к тому, что для параллельного выполнения в алгоритмах решения вычислительных задач достаточно выделять только крупные независимые части расчетов (coarse granularity), что, в свою очередь, снижает сложность построения параллельных методов вычислений и уменьшает потоки передаваемых данных между компьютерами кластера. Вместе с этим следует отметить, что организации взаимодействия вычислительных узлов кластера при помощи передачи сообщений обычно приводит к значительным временным задержкам, что накладывает дополнительные ограничения на тип разрабатываемых параллельных алгоритмов и программ.

В завершении обсуждаемой темы можно отметить, что существуют и другие способы классификации вычислительных систем (достаточно полный обзор подходов представлен в [22], см. также материалы сайта http://www.parallel.ru/computers/taxonomy/); при рассмотрении данной темы параллельных вычислений рекомендуется обратить внимание на способ структурной нотации для описания архитектуры ЭВМ, позволяющий с высокой степенью точности описать многие характерные особенности компьютерных систем.


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.