Традиционный ручной компас-пеленгатор — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Традиционный ручной компас-пеленгатор

2021-12-11 35
Традиционный ручной компас-пеленгатор 0.00 из 5.00 0 оценок
Заказать работу

Сверху компаса находится призма с V-образной прорезью

Компасы традиционных типов имеют рукоятку. На котелке сверху установлена призма, позволяющая считывать показания компаса, когда его держат на уровне глаз. Обычно на призме есть V-образная прорезь, а на картушке внизу - деления от 0 до 359°. Когда прорезь на призме совпадает с направлением на объект, через призму считывают показания пеленга. При взятии пеленга компас подобного типа следует держать на расстоянии вытянутой руки. Компасы-пеленгаторы новых типов можно держать непосредственно у глаза, при этом объект и картушка компаса видны одновременно, хотя глаз сфокусирован на большее расстояние.

Одно из последних достижении в этой области - полностью автоматизированный ручной компас-пеленгатор с электронным устройством, которое ориентируется по магнитному полю и быстро выдает цифровой результат на индикаторе.

Мини-компас

Этот маленький компактный компас с визиром можно держать близко к глазу при взятии пеленга

Электронный ручной компас-пеленгатор

Имеет электронное устройство, которое реагирует на изменение магнитного поля

(Устаревшее)

ГИРОКОМПАСЫ

Гирокомпас является навигационным гироскопическим прибором, служащим для указания направлений в море. Основным элементом всех навигационных гироскопических приборов, применяемых для указания направлений в море, является гироскоп.

Гироскопом называется тело, вращающееся с большой скоростью вокруг своей оси симметрии и подвешенное так, что ось, вокруг которой происходит вращение, может изменять свое положение в пространстве. Гироскоп представляет собой массивный диск, который приводится во вращение электрическим путем, являясь ротором электродвигателя. Гироскоп (рис. 25), подвешенный в кардановых кольцах, может поворачиваться вокруг трех взаимно перпендикулярных и пересекающихся в одной точке осей: х — ось вращения самого гироскопа, или главная ось, у — ось вращения внутреннего кольца, z — ось вращения наружного кольца подвеса. Углы поворота гироскопа вокруг осей вращения будут координатами, определяющими положение гироскопа в пространстве. При всех возможных поворотах гироскопа около указанных осей неподвижной остается только одна его точка О, в которой эти оси пересекаются. Эту точку называют точкой подвеса гироскопа.

Гироскоп, у которого возможны вращения вокруг трех указанных осей, называется гироскопом с тремя степенями свободы. Гироскоп, обладающий тремя степенями свободы, у которого центр тяжести совпадает с точкой подвеса и не подверженный действию моментов внешних сил, называют свободным гироскопом.

Хотя до сих пор свободный гироскоп практически не создан, современные гироскопы имеют настолько малые силы трения в подвесе, что по своим свойствам приближаются к свободному гироскопу.

На гироскоп, вращающийся с большой скоростью вокруг главной оси х, существенно не повлияет поворот основания карданового подвеса. Следовательно, направление, которое было придано главной оси гироскопа при его запуске, останется постоянным в пространстве. Это первое и основное свойство гироскопа иногда называют «устойчивостью» главной оси свободного гироскопа. Чем больше угловая скорость и масса ротора, тем сильнее выражено его свойство сохранять неизменным первоначальное направление своей оси в' пространстве. Используя свободный гироскоп, можно проследить за суточным вращением Земли вокруг своей оси. В связи с тем что ось свободного гироскопа сохраняет неизменным свое первоначальное направление в пространстве, а Земля вращается, наблюдатель сможет увидеть, что ось гироскопа поворачивается относительно Земли. Если главную ось свободного гироскопа направить на какую-либо звезду, то ось гироскопа, сохраняя направление на звезду неизменным, будет вместе с ней изменять свое положение, поскольку плоскости меридиана наблюдателя и истинного горизонта вращаются вместе с Землей. Измерение положения главной оси гироскопа относительно меридиана и горизонта называется видимым движением.

Теперь приложим к свободному гироскопу постоянную силу F, которая будет стремиться повернуть его вокруг горизонтальной оси уу (рис. 26). Однако гироскоп не будет поворачиваться вокруг оси уу, а начнет поворачиваться вокруг оси zz в направлении, показанном стрелкой. Приложив к гироскопу силу, стремящуюся повернуть его вокруг вертикальной оси zz, увидим, что гироскоп начнет поворачиваться вокруг горизонтальной оси уу. Таким образом под действием приложенной постоянной силы главная ось гироскопа будет поворачиваться не в направлении приложенной силы (как это было бы в случае невращающегося гироскопа), а будет поворачиваться в плоскости, перпендикулярной линии действия силы. Такое движение гироскопа называется прецессией и является вторым свойством гироскопа.

Прецессионное движение прекращается сразу же после окончания действия силы. Поэтому различные толчки и удары, которые передаются от корпуса судна на гирокомпас, вызывают прецессию гироскопа только в течение своего действия, а так как оно кратковременно, то ось гироскопа практически остается в меридиане. Следовательно, толчки и удары не оказывают на гирокомпас почти никакого влияния. Свободный гироскоп не может быть использован как курсоуказатель, потому что его ось непрерывно уходит от меридиана и одновременно наклоняется к плоскости горизонта.

Для превращения свободного гироскопа в гирокомпас используется свойство прецессии. Гироскопу необходимо сообщить направляющий момент, который удерживал бы его главную ось в плоскости меридиана так же, как магнитный момент стрелок магнитного компаса удерживает картушку компаса в плоскости компасного меридиана.

Лишив гироскоп возможности поворачиваться вокруг оси уу, мы получим вместо свободного гироскопа связанный. В этом случае гироскоп будет вынужден поворачиваться вместе с Землей вокруг оси уу, иными словами совершать вынужденную прецессию. Следовательно, в теле ротора гироскопа появится вращающий момент, который заставит гироскоп повернуться вокруг оси так, чтобы его главная ось совместилась с меридианом наблюдателя.

Подвесим к нижней части гирокамеры гироскопа груз (рис. 27), в результате чего центр тяжести G гирокамеры окажется смещенным относительно точки подвеса О. Допустим, что гироскоп находится на экваторе, главная ось гироскопа хх в данный момент горизонтальна и выведена из меридиана на угол, равный 90°, т. е. расположена в направлении линии OstW (рис. 28).

В этом положении момент силы тяжести р относительно точки подвеса О, называемый маятниковым моментом, равен нулю, так как направление силы тяжести проходит через точку подвеса. Затем вследствие вращения Земли плоскость истинного горизонга повернется на некоторый угол β (восточная половина горизонта опустится), а ось хх, сохраняя первоначальное направление, составит с горизонтом также угол β. При этом сила тяжести р, направленная всегда по отвесной линии, создаст момент относительно оси уу, под действием которого гироскоп начнет совершать прецессионное движение вокруг оси zz к меридиану, и его ась в конечном итоге установится в меридиане. Такой гироскоп с пониженным центром тяжести становится указателем меридиана, т. е. чувствительным элементом гирокомпаса. Однако после того как гироскоп прецессионным движением устанавливается в плоскости меридиана, его главная ось будет совершать незатухающие колебания вокруг истинного меридиана; таким прибором пользоваться нельзя. Чтобы гирокомпасом можно было пользоваться в судовождении, необходимо, чтобы главная ось чувствительного элемента постоянно находилась в плоскости меридиана. Для приведения гирокомпаса в меридиан, т. е. для гашения незатухающих колебаний, имеется специальное устройство — жидкостный успокоитель.

У гирокомпаса, как и у всякого прибора, имеются погрешности, которые делятся на три категории: конструктивные, инструментальные и ошибки наблюдателя. Вследствие наличия погрешностей гирокомпаса гирокомпасный меридиан не совпадает с истинным меридианом на угол, называемый общей поправкой гирокомпаса∆ГК. В связи с тем, что общая поправка не является величиной постоянной, судоводитель обязан систематически определять общую поправку гирокомпаса навигационными, астрономическими и радионавигационными способами.

Рассмотрим основные узлы гирокомпаса типа «Курс», устанавливаемого на судах морского флота. Главным прибором гирокомпаса является основной компас (рис. 29), в котором расположены чувствительный элемент — гиросфера, следящая сфера, внешние или неподвижные части гирокомпаса.

Гиросфера (рис. 30) предназначена для определения линии NS, которая указывает гирокомпасный меридиан. Гиросфера представляет собой герметическую сферу, внутри которой расположены два гиромотора, жидкостный успокоитель, реле выключателя затухания и катушка электромагнитного дутья. Корпус гиросферы состоит из двух латунных полусфер, облицованных снаружи эбонитом. Гироскопы или гиромоторы являются трехфазными электрическими двигателями с частотой вращения 20000 об/мин. Гиромоторы установлены на специальном кронштейне, который крепится к нижней полусфере.

Жидкостный успокоитель служит для гашения незатухающих колебаний чувствительного элемента.

Катушка электромагнитного дутья уложена в нижней части гиросферы. При прохождении тока, вокруг катушки образуются переменные магнитные поля, которые препятствуют опусканию гиросферы, поддерживая гиросферу на плаву в центре следящей сферы. Центр тяжести гиросферы ниже ее геометрического центра примерно на 6 мм. Диаметр гиросферы равен 252 мм. Для подводки электрического питания к гиросфере на ее поверхности имеются графитно-эбонитовые электроды: два полярных, широкий экваториальный полупояс, четыре узких и небольшой круглый электрод на экваторе гиросферы. Гиросфера помещается в следящую сферу и вместе с ней полностью погружается в поддерживающую токопроводящую жидкость, налитую в резервуар. Следящая сфера негерметична, и гиросфера плавает в ней.

Поддерживающая жидкость представляет собою смесь дистиллированной воды, глицерина, буры и формалина. Следящая сфера (рис. 31) служит для обеспечения подвеса чувствительного элемента и подведения к нему электрического питания. Она состоит из двух алюминиевых 3 и 6 чаш, держателя 1 со стержнями 2, двух токопроводящих колец 4 с электродами, эбонитовых колодок 5 и смотровых застекленных окон 7, служащих для наблюдения за гиросферой. Составной частью следящей системы является азимут-мотор, который служит для согласования следящей сферы с гиросферой.

К внешним или неподвижным частям гирокомпаса относятся нактоуз с кардановым подвесом, резервуар с поддерживающей жидкостью, «стол» с приборами системы охлаждения, контрольными приборами и корректором скоростной погрешности. Питание гирокомпаса осуществляется специальным агрегатом-преобразователем.

Гирокомпас по сравнению с магнитным компасом обладает следующими преимуществами: магнитные поля не влияют на работу гирокомпаса и поправка его постоянна на всех курсах; он более устойчив в меридиане; его можно использовать для подключения необходимого числа репитеров и других приборов; он обеспечивает более точное указание курса. Основной недостаток гирокомпаса — сложность конструкции и потребность в электрическом токе.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.