Доказательства шарообразности Земли — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Доказательства шарообразности Земли

2022-07-03 37
Доказательства шарообразности Земли 0.00 из 5.00 0 оценок
Заказать работу

Что Земля по необходимости должна находиться в центре и быть неподвижной, не видно потому, что тела, с силой бросаемые вверх, падают снова на то же место, даже если сила забросит их на бесконечно большое расстояние. Из этого ясно, что Земля не движется и не находится вне центра Вселенной.

Форма Земли по необходимости должна быть шарообразной, ибо каждая из её частей имеет вес и стремится вниз до тех пор, пока не достигнет центра. Части Земли подвергаются взаимному давлению и уступают одна другой до тех пор, пока не будет достигнуто ближайшее положение к центру.

Шарообразность Земли доказывается и наблюдениями. Во-первых, во время затмений Луны край тени на её диске всегда имеет форму дуги. Следовательно, раз Луна затмевается потому, что её заслоняет от Солнца Земля, то причина такой формы тени — округлость Земли, и Земля шарообразна.

Во-вторых, наблюдение звёзд с очевидностью доказывает не только то, что Земля круглая, но и то, что она небольшого размера. Стоит нам немного переместиться к югу или к северу, как горизонт явственно становится другим: картина звёздного неба над головой значительно меняется, и при переезде на север или на юг видны не одни и те же звёзды. Так, некоторые звёзды, видимые в Египте, не видны в северных странах, а звёзды, которые в северных странах видны постоянно, в Египте заходят. Таким образом, из этого ясно не только то, что Земля круглой формы, но и то, что она небольшой шар: иначе мы не замечали бы указанных изменений столь быстро в результате столь незначительных перемещений.

Поэтому те, кто полагают, что область Геракловых столпов (Гибралтарский пролив. — Прим, рел.) расположена напротив Индий и что в этом смысле океан един, думается, придерживаются не таких уж невероятных воззрений.

И наконец, те математики, которые берутся вычислять длину земной окружности, говорят, что она составляет около 400 000 стадиев (вероятно, 74 тыс. километров. — Прим. рел.). Судя по этому, тело Земли должно быть не только шарообразным, но и небольшим по сравнению с величиной других звёзд.

(По книге Аристотеля «О небе». Около 340 г. ло н. э.)

её авторитет в Средние века в какой-то момент стал сдерживать прогресс этой науки.

Сначала философ обосновал идею о том, что во Вселенной есть особая точка — центр, к которому в силу своей природы стремились тяжёлые элементы: земля и вода. Ведь если бы такого центра не было, падение предметов продолжалось бы вечно, без остановки. Из-за стремления элементов кцентру мира Земля получила форму шара. Лёгкие элементы — воздух и огонь — напротив, стремились от центра, но не уходили за границы «подлунной сферы». За ней начиналось царство небесных тел, построенное из особого, пятого, элемента -«квинтэссенции», эфира.

Движения к центру и от него Аристотель считал «естественными», все остальные его виды требовали приложения силы и назывались «принудительными». Земная механика Аристотеля не знала движения по инерции, это открытие сделал только Галилей. Чтобы объяснить, почему небесные тела движутся, философ ввёл некий божественный перводвигатель, располагавшийся у внешних пределов мира. А как быть с полётом пущенной стрелы или брошенного камня? Ведь они летят, когда сила уже не действует. Согласно Аристотелю, их несёт воздушный вихрь. Камень раздвигает воздух, тот обходит летящее тело, ударяет по нему сзади и тем самым поддерживает движение. Эта странная на наш взгляд физика не допускала даже осевого вращения Земли, которое, между прочим, могло бы серьёзно упростить «небесный механизм» Евдокса — Аристотеля. Вместо 55 сфер в нём осталась бы 41. А вот ученик ученика Аристотеля — Аристарх Самосский — не только признал вращение Земли, но и «изгнал» её из центра мира.

АРХИМЕД. ИЗМЕРЕНИЕ НЕБА

Архимеда из Сиракуз (около 287—212 до н. э.) обычно не причисляют к астрономам. Выдающийся математик, основоположник статики и гидростатики, оптик, инженер и изобретатель, он уже в античное время завоевал громкую славу. Кстати, слова учёного о том, что он сделал механическое открытие, которое позволило бы ему сдвинуть Землю, относятся не к закону рычага (ко временам Архимеда он уже был известен), а к принципу построения механических редукторов. Именно с помощью редуктора Архимед «силой одного человека» сдвинул с места вытащенный на берег корабль.

В молодости Архимед учился в Александрии у математика Конона. Вполне вероятно, что там он познакомился с немолодым уже Аристархом. Вернувшись в Сиракузы, учёный стал, как сказали бы теперь, «главным военным инженером» города. Его система обороны и военные машины, включая «жгущие зеркала» и «железные лапы» (манипуляторы, топившие десантные суда римлян), сделали город неприступным. Под старость ему пришлось участвовать в обороне Сиракуз, которые во время 2-й Пунической войны были осаждены римским полководцем Марком Марцеллом. Город держался больше года и был захвачен лишь в результате предательства. Во время разграбления Сиракуз Архимед был убит римским солдатом.

Об общих взглядах учёного на мир можно судить по его сочинению «О плавающих телах». Архимед, с одной стороны, признавал существование атомов, с другой — следовал идее тяготения Аристотеля. В одной из своих работ Архимед описал измерение углового поперечника Солнца. Для этого учёный использовал горизонтальную линейку с поставленным на неё цилиндриком. Линейка наводилась на светило при его восходе, «когда на Солнце можно смотреть». Глядя вдоль линейки, Архимед двигал по ней цилиндрик и отмечал те его положения, когда он почти закрывал солнечный диск и когда перекрывал его полностью. Так получалась «вилка», в пределах которой лежала измеряемая величина. Результат Архимеда -- 27' и 32,5' -- охватывал действительное значение углового диаметра Солнца — 32'.

Римский историк Тит Ливии, рассказывая об осаде Сиракуз, называет Архимеда «единственным в своём роде наблюдателем неба и звёзд». Возможно, эта характеристика связана со знаменитым техническим творением учёного — механическим небесным глобусом, привезённым в Рим в качестве трофея. В отличие от обычного Архимедов глобус показывал не только вращение неба, но и движения других светил. Видимо, вдоль пояса зодиакальных созвездий в нём имелся ряд окошек, за которыми перемещались макеты светил, приводимые в движение зубчатыми передачами и воздушными турбинками.

Архимед даже написал книгу «Об устройстве небесного глобуса», которая, увы, до нас не дошла. С этой книгой связывают перечень вычисленных учёным космических расстояний между Землёй, Солнцем, планетами. Расстояния даны в стадиях (одна стадия равна 150—190 м). Числа не сходятся между собой (из суммы интервалов не получаются расстояния) и выглядят загадочно. Но недавно было обнаружено, что они

О ЖРЕЧЕСКОЙ АСТРОНОМИИ

Одной из великих бед, равно как и одной из самых смешных сторон людского рода, является то, что во всех странах, носяших имя цивилизованных, за исключением, быть может, Китая, жрецы берут на себя занятия, являющиеся прерогативой учёных. Они вмешиваются в порядок календарного года: потому, дескать, им принадлежит это право, что народам необходимо знать дни своих праздников. Так халдейские, египетские, греческие и римские жрецы считали себя математиками и астрономами. Но что это за математика и астрономия! Слишком уж они были заняты своими жертвоприношениями, оракулами, предсказаниями будущего и своими знамениями, чтобы ешё и серьёзно заниматься наукой. Никто из делающих своей профессией шарлатанство не может обладать точным и ясным умом. Люди эти были астрологами, а не астрономами.

Сами греческие жрецы считали поначалу год состоящим только из 360 дней. Понадобилась наука геометров, чтобы жрецы поняли, что ошиблись на пять и более дней. Итак, они преобразовали свой год. Другие геометры вдобавок к этому показали им, что они ошиблись на шесть часов. Ифит обязал их изменить свой жреческий календарь. Они добавили к своему неверному голу ещё один день в конце каждого четырёхлетия, и Ифит отметил это изменение учреждением Олимпиад.

Наконец, жрецы были вынуждены прибегнуть к учёному Ме-тону, который, сличая лунный и солнечный годы, создал новый девятнадцатигодичный цикл, в конце которого Солнце и Луна возвращались в своё исходное положение с приблизительной разницей в полтора часа. Этот цикл был начертан золотыми знаками и выставлен на агоре (плошади. — Прим, рел.) в Афинах — это и есть знаменитое золотое число, коим поныне пользуются с соответствующими коррективами.

Хорошо известно, какую смехотворную путаницу внесли в календарь римские жреиы. Их оплошности были столь велики, что летние празднества падали на зиму. Цезарь, универсально образованный Уезарь, вынужден был пригласить из Александрии учёного Созигена для исправления чудовищных ошибок блюстителей обрядов.

А когда во времена папства Григория XIII возникла необходимость реформировать календарь Юлия Цезаря, к кому обратился папа? К какому-нибудь инквизитору? Нет, к учёному, врачу по имени Лилио.

(По «Философскому словарю» Ф. Вольтера. 17641769 гг.)

приобретают смысл, если отнести некоторые из них к гелиоцентрической системе. Учёный верно определил относительное расстояние до Луны и размеры орбит Меркурия, Венеры и Марса, если считать их гелиоцентрическими.

О смешанной системе мира (геоцентрической, НО С обращением Меркурия И Венеры вокруг Солнца) римский архитектор Витрувий, например, упоминает как об общеизвестной. Вероятно, Архимед был её автором. Сделанное учёным первое правильное определение расстояний до планет оказалось в античности и последним. Геоцентрическая система не давала таких возможностей.

ЭРАТОСФЕН. ИЗМЕРЕНИЕ ЗЕМЛИ

Архимед переписывался с учёными Александрии. После смерти своего учителя Конона он посылал математические сочинения Эратосфену, который в это время возглавлял Мусейон, научный центр в Александрии. Эратосфен Киренский (около 276—194 до н. э.) был разносторонним учёным — математиком, филологом, географом. К его важнейшим научным достижениям относится измерение окружности земного шара.

Живя в Египте, учёный знал, что Сиена (теперешний Асуан) лежит на Северном тропике. Такой вывод следовал из того, что в полдень дня летнего солнцестояния светило там освещает дно глубоких колодцев, т. е. стоит в зените. С помощью особого прибора, который он называл «скафис», учёный установил, что в то же время в Александрии Солнце отстоит от вертикали на 1/50 долю окружности. Сиена находится на том же меридиане, что и Александрия; расстояние между городами было тогда известно — около 5 тыс. египетских стадий (расстояния тогда измеряли шагами специалисты-землемеры гарпеданапты). Зная длину дуги и угол, который она стягивает, Эратосфен умножил расстояние до Сиены на 50 и получил длину земной окружности в 252 тыс. стадий. По нашим меркам это составляет 39 690 км. Учитывая грубость измерительных приборов той эпохи и ненадёжность исходных данных, великолепное совпадение результатов Эратосфена с действительными (40 тыс. километров) можно считать большой удачей.

ЭПОХА РИМА

В 264 г. до н. э. римляне овладели Южной Италией с расположенными там греческими городами Тарентом, Кротоном и другими, составлявшими некогда область, которую называли Великой Грецией. Через полвека Риму подчинились греческие колонии Сицилии, включая знаменитые Сиракузы, а в 146 г. до н. э. и сама Греция превратилась в римскую провинцию Ахайю. Спустя 100 лет Юлий Цезарь присоединил к Римской империи Египет с Александрией — тогдашней столицей эллинской науки.

Овладев эллинским миром, римляне не стали подавлять его культуру, а во многом восприняли её. Знание греческого языка было обязательным для образованных римлян. Часто они учились в Греции. Здесь получили образование многие видные деятели Рима, например Тиберий Гракх, Помпеи, Цицерон, Цезарь. Со временем сложилась своеобразная греко-римская культура, в русле которой развилась блестящая латинская литература. Рим дал миру великолепных поэтов, историков, драматургов, но в его шкалу ценностей не входили математика и астрономия.

Занятия теоретической наукой в отличие от литературных не считались престижными. Их приравнивали к ремеслу и считали недостойными свободного гражданина. Многие римские политики, например Цицерон и Цезарь, были выдающимися литераторами. Плиний Старший написал обширный труд «Естественная история», в котором собрал массу естественнонаучных сведений, не затронув, однако, математической стороны астрономии.

Нельзя сказать, чтобы римляне совсем не интересовались астрономией. К примеру, полководец Цезарь Германик перевёл с греческого на латинский язык астрономическую поэму Арата «Явления».

Витрувий в трактате «Об архитектуре» уделил много внимания перечислению типов солнечных часов и в связи с этим коснулся движений светил. Одну за другой он описал две системы мира: сначала упомянул об обращении Меркурия и Венеры вокруг Солнца, потом нарисовал чисто геоцентрическую систему, где они обращаются вокруг Земли. Ещё более загадочным кажется его оброненное тут же и мало связанное с текстом упоминание о «круговой орбите Земли», которое может служить намёком на знакомство автора с гипотезой Аристарха. Очевидно, что этот знающий и начитанный человек тем не менее не желает разбираться в тонкостях астрономических теорий.

В Римской империи работали замечательные астрономы, но сами римляне этой наукой пренебрегали. Когда Юлию Цезарю понадобилось реформировать календарь, он пригласил из Александрии греческого астронома Созигена.

 

АНТИЧНАЯ АСТРОНОМИЯ

Античная астрономия занимает в истории науки особое место. Именно в Древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные учёные прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами.


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.