Кристаллохимическое описание строения стекол — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Кристаллохимическое описание строения стекол

2020-12-07 106
Кристаллохимическое описание строения стекол 0.00 из 5.00 0 оценок
Заказать работу

СТЕКЛООБРАЗНОЕ СОСТОЯНИЕ

Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наи­более распространены кристаллические твердые вещества, для структу­ры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризу­ется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температу­ры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, ско­рости растворения и роста кристаллов и др.) неодинаковы при измере­нии в различных направлениях.

Стеклообразное состояние вещества представляет собой аморфную разновидность твердого состояния. Стеклообразное состояние является метастабильным, т. е. характеризуется избытком внутренней энергии. Пространственное расположение частиц вещества, находящегося в стек­лообразном состоянии, является неупорядоченным, что подтверждается результатами рентгеноструктурных исследований.

Согласно законам химической термодинамики переход веществ из стеклообразного состояния в кристаллическое должен осуществляться самопроизвольно, однако высокая вязкость твердых веществ делает не­возможным поступательное движение частиц, направленное на пере­стройку структуры. В твердых телах частицы совершают только колеба­тельные движения относительно положения равновесия.

 2. СТРОЕНИЕ СТЕКЛА

Физические свойства веществ зависят от их состава и строения. Строение стекол является одним из разделов единой проблемы строения вещества. В связи с этим необходимо подчеркнуть, что современные представления о строении стекла базируются на фундаментальных по­ложениях теоретических разделов неорганической и физической химии, кристаллохимии, химии и физики твердого состояния, и, кроме того, включают идеи и обобщенные положения отдельных гипотез строения стекла, основу которых составляют эмпирические зависимости свойств от состава и строения.

Отсутствие прямых методов исследования аморфных веществ, отсут­ствие способов плоскостного изображения объемно неупорядоченных структур пока не позволяют создать завершенную теорию строения стекла.

Существует несколько теоретических направлений решения пробле­мы строения стекла, среди которых наиболее широкое распространение получили кристаллохимическое и валентно-химическое. Они рассматри­вают строение стекла на электронном, атомном или молекулярном уров­нях, базируясь на основных положениях кристаллохимии, теорий хими­ческой связи, зонного строения твердых тел. Преимущественное разви­тие этих направлений обусловлено в первую очередь прогрессом в обла­сти изучения структуры веществ, находящихся в кристаллическом состо­янии. Следует отметить, что основополагающие гипотезы строения стекла А. А. Лебедева (1921) и Захариасена (1931) появились вскоре после открытия прямого метода изучения структуры кристаллов—ме­тода рентгеноструктурного анализа (Лауэ, 1912). Менее распростране­ны представления о полимерном строении стекол, кинетический подход к процессам твердения расплавов в виде стекла, а также представления о строении стекол на основе концепций о строении жидкостей или расплавов.

Учитывая сложность и многоплановость вопроса строения стекла, ограничимся рассмотрением основных положений кристаллохимического и валентно-химического направлений, иллюстрируя их конкретными примерами строения силикатных стекол по мере усложнения их соста­ва — от простейшего по составу однокомпонентного кварцевого стекла до двух-, трех- и многокомпонентных составов промышленных стекол.

Кварцевое стекло

Структурной основной единицей кварцевого стекла является кремнекислородный тетраэдр. Атом кремния окружен четырьмя атомами кислорода, расположенными симметрично в вершинах тетраэдра.

Структура кварцевого стекла выполнена из тетраэдров SiО4, сое­диненных друг с другом вершинами через атомы кислорода. В резуль­тате образуется непрерывный пространственный каркас, отличающийся от геометрически правильных решеток кристаллических модификаций кварца отсутствием дальнего порядка в расположении и ориентации тетраэдров. Тетраэдры SiО4 не образуют в пространстве геометрически правильных сочленений в виде шести членных колец, ха­рактерных для структуры высокотемпературного кристобалита.

Структурная сетка стекла выглядит как искаженная кристаллическая решетка. Искажение заключается в произвольном варьировании значений угла связи Si—О—Si между соседними тетраэдрами в структуре стекла.

Группировка [SiО4]4- имеет избыточный отрицательный заряд (-4), но каркасная сетка из тетраэдров SiО4 в целом электронейтральна, так как каждый атом кислорода связан с двумя атомами кремния. В струк­туре кварцевого стекла все атомы кислорода мостиковые.

Структуры кристаллических и стеклообразной форм диоксида кремния не являются плотноупакованными, так как тетраэдры соединяются вершинами, а не ребрами и не гранями. В кварцевом стекле имеются свободные структурные полости, ограниченные в прост­ранстве мостиковыми атомами кислорода.

Именно благодаря наличию в структуре свободных полостей, кварцевое стекло обладает наиболее высокой газопроницаемостью (гелий, водород, неон) по сравнению с другими силикатными стеклами, в со­ставе которых кроме диоксида кремния присутствуют оксиды щелочных и щелочноземельных металлов.

Фосфатные стекла

Фосфатные стекла построены из тетраэдров [PО4]3. Один из атомов кислорода тетраэдра не может участвовать в образовании связи с другими компонентами структуры из-за наличия двойной связи фосфор — кислород. В структуре фосфатных стекол мостиковыми могут быть толь­ко три атома кислорода фосфор кислородного тетраэдра.

 

                                 

Рис. 2.1. Область стеклообразования и об­ласть ликвации в системе Na2O—B2O5— SiO2

А— область ликвации; Б—линия, по которой наиболее полно проявляется борная аномалия;

В— граница стеклообразования; М— граница опалесцирующих стекол по О. С. Молчановой;

/ — стекло пирекс; 2 — стекло викор

         

Рис. 2.2. Схемы кристаллитного строения кварцевого (а) и натриево-силикатного (б) стекол (по Порай-Кошицу)

1 —кристаллы кварца; 2— кристаллы силиката натрия; 3— ионы натрия; 4—тетраэдры Si0.

По данным рентгеноструктурного анализа расстояние Р—О в стеклах равно 0,157 нм, угол Р—О—Р—1400.

В этом отно­шении структура Р203 отличается от структур других стеклообразователей, у которых все атомы кислорода мостиковые. Пространственная структура фосфатных стекол может состоять из колец различного размера, об­разованных чередующимися атомами фосфора и кислорода, лент или цепочек из тетраэдров РО4.

Результаты рентгеноструктурного анализа показывают, что струк­тура двойных фосфатных стекол подобна структуре двойных силикат­ных стекол по следующим двум параметрам: структурной основной единицей являются тетраэдрические элементокислородные группировки; с добавлением модифицирующих оксидов растет число не мостиковых атомов кислорода.

Свойства стекол.

Все типы стекол, независимо от их химического состава и темпера­турной области затвердевания, обладают специфическими свойствами, которые отличают их от кристаллов и жидкостей.

Стекла рентгеноаморфны вследствие неупорядоченного атомного строения. В структуре стекла отсутствует дальний порядок, т. е. систе­матическая повторяемость элементарных объемов структуры, характер­ная для кристаллических веществ.

Если ориентировочно определить межплоскостное расстояние, соот­ветствующее максимуму аморфного гало, то оно оказывается близким основному дифракционному максимуму кристобалита—0,415 нм. Однако в структуре стекла частицы находятся не на строго определенных рас­стояниях, как в кристобалите или других кристаллических модифика­циях кварца, а на расстояниях больших и меньших относительно неко­торого среднестатистического значения.

Стекла изотропны, если они однородны по составу, свободны от на­пряжений и дефектов. Изотропия свойств стекол, как и других аморф­ных сред, обусловлена отсутствием направленной в пространстве ори­ентации частиц. Оптическая анизотропия может возникнуть в стекле в результате действия растягивающих или сжимающих напряжений (яв­ления оптической анизотропии).

Температурный интервал стеклования. Стекла не имеют определен­ной температуры затвердевания или плавления. Оба эти процесса про­исходят постепенно в некотором температурном интервале. При охлаж­дении расплав переходит из жидкого в пластическое состояние, и только затем—в твердое (процесс стеклования). Наоборот, при нагревании стекло переходит из твердого в пластическое состояние, при более вы­соких температурах—в жидкое (размягчение стекла).

Температурный интервал, в котором происходит процесс стеклования или обратный ему процесс размягчения, называется интервалом стекло­вания и ограничен двумя температурами: со стороны высоких темпера­тур Т f, со стороны низких температур Tg (температура стеклования) (рис. 3.1).

При температуре Tg стекло обладает свойствами твердого упругого тела с хрупким разрушением. Температура Tf является границей пла­стического и жидкого состояний. При температуре Тf из стекломассы уже удается вытягивать тонкие нити.

Понятия о Tg и Tf были введены Тамманом. Подстрочные индексы «g» и «f» являются первыми буквами слов «Glass» — стекло и «Flissigkeit» — жидкость.

                                                                                   

Рис. 3.1. Зависимость свойства Р и его производных в интервале стекло­вания (по Тамману)

/— твердое состояние; // — пластическое; III — жидкое (расплав)

                                          

Рис. 3.2. Влияние условий переохлаж­дения на мольный объем вещества в расплавленном, кристаллическом и стеклообразном состояниях.

Процессы размягчения стекла или затвердевания стекломассы яв­ляются однофазными в отличие от плавления кристаллических веществ или кристаллизации расплавов. При размягчении стекла в интервале стеклования отсутствует жидкая фаза.

Свойства стекол по характеру изменения в интервале стеклования делят на три группы. К первой группе относятся свойства Р, характе­ризующие функцию состояния веществ (внутренняя энергия Е, мольный объем V, энтальпия Н, энтропия S) и кинетические свойства (вязкость), удельное сопротивление r). Свойства первой группы с повышением температуры изменяются постепенно. В интервале стеклования кривая имеет закругленный перегиб (рис. 3.1, кривая 1 ), соответствующий наи­более резкому изменению свойств первой группы. Свойства второй груп­пы представляют собой первую производную по температуре dP/dT от свойств первой группы (коэффициенты термического расширения—ли­нейный и объемный, теплоемкость). Кривая 2 характеризует темпера­турный ход зависимости свойств второй группы. Можно видеть, что в интервале стеклования первая производная dP/dT имеет точку переги­ба Tg. Третья группа включает свойства (теплопроводность, диэлектри­ческие потери), которые являются вторыми производными по темпера­туре от функций состояния (кривая 3). Температурная зависимость d2P/dT2  имеет максимум или минимум в точке Tw.

Характер изменения свойств стекол при нагревании резко отличается от температурной зависимости свойств кристаллических веществ. Для последних нет деления свойств на группы, характер температурных кри­вых однотипен: незначительное линейное изменение свойств до темпера­туры плавления, резкое скачкообразное изменение свойств при темпе­ратуре плавления. Температуры Tg, Tw, Tf лежат всегда ниже темпера­туры плавления соответствующего кристалла.

Значения температур Tg, Tf, а также интервал стеклования (Tg— Tf) зависят от состава стекла.

Температуры Tg и Tf принадлежат к числу характеристических то­чек на температурной кривой вязкости. Температуре стеклования Tg со­ответствует вязкость стекломассы, равная 10123 Па-с, а тем­пературе Tf— вязкость 108 Па-с.

Из (рис. 3.2) можно видеть, что объем стекла в отличие от объема кристаллического вещества не является константой для данного состава. Он зависит от температурно-временных условий получения стекла.

Изотермическая выдержка закаленного стекла при температуре (T<Tg) будет сопровождаться уменьшением объема по прямой l т в связи со стремлением структуры достичь равновесного состояния при температуре Т (см. рис. 3.2). Время структурных перестроек в области низких температур исключительно велико

Неравновесное состояние структуры стекла находит свое выражение в явлениях термического последействия (так называемое, «вековое повы­шение точки нуля» и «депрессия точки нуля»), широко известных при эксплуатации точных стеклянных шкал и термометров.

ЭМАЛИ И ПОКРЫТИЯ

Составы и свойства эмалей

В процессе формирования эмалевого покрытия эмалевая фритта, первоначально резко закаленная от температуры варки грануляцией в воду или прокаткой между водоохлаждаемыми валиками, претерпевает многократный нагрев от твердого до вязкого состояния при температу­ре обжига и последующее охлаждение. Так, при эмалировании крупно­габаритной химической аппаратуры цикл нанесения и обжига каждого слоя длится часами. В подавляющем большинстве случаев эмаль на поверхность изделия наносят шликерным способом. Шликер — суспен­зия, включающая эмаль, иногда — кристаллические наполнители, гли­нистые минералы, электролиты, вводимые для обеспечения седиментационной устойчивости, и воду. Приготовляют шликер мокрым помолом эмали в шаровых мельницах, в процессе которого эмаль взаимодейст­вует с компонентами шликера.

Таким образом, процесс эмалирования следует рассматривать как вторичную термическую обработку эмали в нестационарных темпера­турных полях, осложненную разнообразными химическими взаимодей­ствиями при изготовлении и хранении шликера. Несколько проще обстоит дело при нанесении эмали на горячее металлическое изделие

пудровым способом, при котором эмаль подвергают сухому помолу, но этот метод применяют лишь для чугунных изделий.

В промышленности эмали варят в периодических вращающихся пе­чах при 1250—1350°С, не позволяющих для многих типов эмали доста­точно полно провести гомогенизацию и осветление расплава. Практи­чески эмаль не достигает равновесной структуры и подвержена струк­турным преобразованиям в процессе нанесения. Вместе с тем следует отметить, что для достижения максимальной химической устойчивости обязательным условием является обеспечение однородности микро- и макроструктуры эмалевого покрытия. Это достигается как подбором состава эмали, так и соответствующей технологией нанесения.

Однако неоднородность эмалевого покрытия не всегда является его недостатком. Многие изделия, полученные литьем чугуна или алюми­ниевых сплавов, являются чрезвычайно газонасыщенными. В таких случаях для получения бездефектных покрытий используют неоднород­ный и пористый грунтовый слой, который затем перекрывают соответ­ствующими покровными эмалями. Именно по этой причине для чугун­ных изделий используют, как и прежде, фриттование, то есть не полностью проплавленные эмали, в простейшем случае — на основе смеси из кварцевого стекла, полевых шпатов, буры, плавикового шпата и соды. Для этой же цели иногда применяют «сырые» эмали, которые, как и некоторые глазури, представляют собой суспензию сырьевых компонентов.

Создавая тем или иным путем неоднородность структуры эмалевого покрытия, стремятся обеспечить достаточно высокий уровень термиче­ских и механических характеристик. Микронеоднородная структура эмалевого покрытия в этом случае создается либо методом направлен­ной кристаллизации стекла (ситаллизацией), либо введением в покры­тие 10—15 % дисперсных кристаллических наполнителей.

Наиболее прост технологический процесс эмалирования золота, се­ребра, меди и их сплавов. Основной функцией эмали является созда­ние декоративного эффекта вследствие окраски и интенсивного блеска покрытия. Эмалирование производят при 600—650°С с использовани­ем легкоплавких окрашенных прозрачных щелочно-свинцовосиликатных эмалей или заглушенных (непрозрачных) эмалей с добавлением необходимого количества керамических пигментов. Например, исполь­зуют исходную фритту состава, мол.,%: 40 КдО, 15 РЬО, 30 SiО2 и 15 SnО2.

Хотя чугун стали эмалировать раньше, чем многие другие металлы, до настоящего времени эмалирование чугуна наиболее сложно из-за его газонасыщенности и непостоянства структуры и свойств металла, которые подвержены в том числе и сезонным колебаниям. Первый слой в этом случае формируют с использованием плавленых и фриттованных грунтовых эмалей. Сцепление обеспечивается в основном взаим­ным прониканием эмали и пористого металла в переходном слое, применять оксиды сцепления во многих случаях не требуется.

В том случае, когда в составе эмали содержание фтора указывает­ся в частях по массе сверх 100 %, соответствующее его количество вво­дят криолитом NasAlFg или кремнефтористым натрием NaaSiFe. В рас­чете шихты при этом должно быть учтено соответствующее этим соеди­нениям количество оксидов натрия, алюминия и кремния.

Грунты для чугуна изготовляют фриттованием. Фриттование следует проводить при невысоких температурах во избежание образо­вания кристобалита, которое ведет к скалыванию эмали с поверхности изделий. Обычный мельничный состав при изготовлении шликера со­держит, ч. по массе: 100 эмали, 10 глины, 10 кварца, 1 буры, 50—60 воды.

Чтобы увеличить интер­вал температур, в котором формируется доброкачественное покрытие, обычно используют шликер следующего состава, ч. по массе: 70 фритта эмали 2015, 30 фритта эмали 3132, 10—30 кварцевого песка, 5—6 глины, 1—2 буры и 50—55 воды. Такие грунты применяют при эмалировании стальной посуды.

Эмали для кислых сред

Для защиты оборудования, работающего в кислых растворах, по В.В.Варгину следует использовать эмали состава, % по массе: 64—69 SiO2, 5—6 TiO2, 3—4 В2О3, 0—5 CaO, 19—22 Na2O и 3—4 фтора на 100 ч. по массе эмали. Выбор подобного состава обусловлен необходимостью обеспечить не только антикоррозионные свойства, но и бездефектность покрытия, при этом решающим фактором является низкая вязкость при температуре обжига. При исследовании коррозии эмалевых покрытий, в том числе в автоклавных условиях, было уста­новлено, что определяющим фактором является содержание кремнезе­ма. Максимальная устойчивость эмали в кислых растворах достигается при содержании SiO2 70—75 % по массе и подавлении структурных преобразований — кристаллизации и ликвации путем использования полищелочного эффекта и целенаправленного выбора соотношения других компонентов, обеспечивающих низкую вязкость эмали при тем­пературе обжига покрытия. В этом случае можно обеспечить работоспособность покрытия в кислых средах при температурах до 250°С и соответствующих давлениях. В последние годы особенно актуально создание покрытий, работоспособных в средах со значениями рН от 1 до 14, так называемых кислотощелочестойких эмалей.

Достаточные термомеханические свойства покрытия обеспечивают­ся при введении 10—15 % кристаллических наполнителей при форми­ровании покрытия. Во многих случаях эмалевое покрытие должно ра­ботать при высоких механических, абразивных и термических нагруз­ках. В таких случаях применяют стеклокристаллические — ситаллизи-рованные—покрытия, термомеханические характеристики которых в 1,5—2,5 раза выше, чем у стекловидных эмалей.

Сопоставление составов стекловидных и стеклокристаллических эмалей для химической аппаратуры позволяет заметить существенные различия. В случае стекловидных эмалей выбор компонентов и их со­отношения обеспечивает, возможно, более однородную структуру по­крытия. Характерно использование как высококремнеземистых, так и многоциркониевых составов. В стеклокристаллических эмалях соотно­шение компонентов и введение инициаторов кристаллизации (P2О5 и др.) вызывает процессы ликвации и объемной крис­таллизации при формировании покрытия или дополнительной терми­ческой обработке. Составы стекловидных эмалей и технология их на­несения обеспечивают низкую скорость коррозии покрытия в водных растворах—0,1—0,2 мм/год. Стеклокристаллические покрытия имеют микронеоднородную структуру, обеспечивающую торможение разру­шения на границе раздела фаз, что определяет повышение термомеха­нических свойств, но в то же время и увеличение скорости коррозии. В большинстве случаев в этих эмалях кристаллизуются несколько фаз: модификации кремнезема, мета- и дисиликат лития, рутил и др. Кристаллизация идет во время обжига, поэтому структура покрытия зависит от скорости нагрева и охлаждения. Исключением являются эмали: содержание, % по массе 55-58 SiO2, 0-3 MgO, и др. Во время обжига в эмали протекает лишь процесс ликвации, а при дополнительной термической обработке одна из фаз кристаллизуется в форме неупорядоченного твердого раствора со структурой кварца. Такое течение структурных преоб­разований обеспечивает однородную микрогетерогенную структуру покрытий с размером кристаллов менее 0,1 мкм. Во многих случаях устойчивость к коррозии материала с такой микронеоднородностью мало отличается от устойчивости стекловидных покрытий, уступая им в щелочных средах, но превосходя в солевых расплавах.

 

Жаростойкие покрытия

При формировании жаростойких покрытий на легированных ста­лях и сплавах в основном используют малощелочные или бесщелочные бариевосиликатные эмали. В покрытие стремятся ввести возможно большее количество тонкодисперсных огнеупорных наполнителей. Это требует очень тонкого измельчения эмали при изготовлении шликера и проведения высокотемпературного обжига в защитной газовой среде. Подобная технология приемлема лишь для очень ответственных изде­лий. То же относится и к формированию защитных покрытий жаро­стойких металлов, для которых наиболее перспективно формирование покрытий с заданными свойствами на основе процессов диффузии.

Эмали для легких сплавов

Для эмалирования легких сплавов необходимо использовать легко­плавкие эмали.

Свинецсодержащие и фосфатные эмали для легких сплавов широ­кого распространения в настоящее время не имеют. В качестве приме­ров титаносиликатных эмалей приведены составы: наиболее легкоплавкой 0.5-1.5 LiO, 20-25 К2О; и наиболее химически стойкой 20.8 Al2O3, 20.8 Na2O эмалей. Различное соотношение компонентов при достаточно близком составе отражает возможность управлять свойствами покрытия путем изменения структурных преобразований в эмали при ее обжиге на металли­ческом изделии. Таким образом, как и в технологии стекла, управление структурными преобразованиями в эмали является наиболее рацио­нальным путем совершенствование эмалевых покрытий.

СТЕКЛООБРАЗНОЕ СОСТОЯНИЕ

Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наи­более распространены кристаллические твердые вещества, для структу­ры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризу­ется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температу­ры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, ско­рости растворения и роста кристаллов и др.) неодинаковы при измере­нии в различных направлениях.

Стеклообразное состояние вещества представляет собой аморфную разновидность твердого состояния. Стеклообразное состояние является метастабильным, т. е. характеризуется избытком внутренней энергии. Пространственное расположение частиц вещества, находящегося в стек­лообразном состоянии, является неупорядоченным, что подтверждается результатами рентгеноструктурных исследований.

Согласно законам химической термодинамики переход веществ из стеклообразного состояния в кристаллическое должен осуществляться самопроизвольно, однако высокая вязкость твердых веществ делает не­возможным поступательное движение частиц, направленное на пере­стройку структуры. В твердых телах частицы совершают только колеба­тельные движения относительно положения равновесия.

 2. СТРОЕНИЕ СТЕКЛА

Физические свойства веществ зависят от их состава и строения. Строение стекол является одним из разделов единой проблемы строения вещества. В связи с этим необходимо подчеркнуть, что современные представления о строении стекла базируются на фундаментальных по­ложениях теоретических разделов неорганической и физической химии, кристаллохимии, химии и физики твердого состояния, и, кроме того, включают идеи и обобщенные положения отдельных гипотез строения стекла, основу которых составляют эмпирические зависимости свойств от состава и строения.

Отсутствие прямых методов исследования аморфных веществ, отсут­ствие способов плоскостного изображения объемно неупорядоченных структур пока не позволяют создать завершенную теорию строения стекла.

Существует несколько теоретических направлений решения пробле­мы строения стекла, среди которых наиболее широкое распространение получили кристаллохимическое и валентно-химическое. Они рассматри­вают строение стекла на электронном, атомном или молекулярном уров­нях, базируясь на основных положениях кристаллохимии, теорий хими­ческой связи, зонного строения твердых тел. Преимущественное разви­тие этих направлений обусловлено в первую очередь прогрессом в обла­сти изучения структуры веществ, находящихся в кристаллическом состо­янии. Следует отметить, что основополагающие гипотезы строения стекла А. А. Лебедева (1921) и Захариасена (1931) появились вскоре после открытия прямого метода изучения структуры кристаллов—ме­тода рентгеноструктурного анализа (Лауэ, 1912). Менее распростране­ны представления о полимерном строении стекол, кинетический подход к процессам твердения расплавов в виде стекла, а также представления о строении стекол на основе концепций о строении жидкостей или расплавов.

Учитывая сложность и многоплановость вопроса строения стекла, ограничимся рассмотрением основных положений кристаллохимического и валентно-химического направлений, иллюстрируя их конкретными примерами строения силикатных стекол по мере усложнения их соста­ва — от простейшего по составу однокомпонентного кварцевого стекла до двух-, трех- и многокомпонентных составов промышленных стекол.

Кристаллохимическое описание строения стекол

В основе данного описания лежат понятия ближнего и дальнего по­рядка в структуре веществ. Ближний порядок в общем случае, означает правильное расположение отдельных атомов относительно некоторого фиксированного атома. Для оксидных стекол ближний порядок характе­ризует расположение атомов кислорода относительно катионов. Напри­мер, атомы кремния всегда окружены четырьмя атомами кислорода. Координационные группировки [SiО2]4 сохраняются в расплавленном, кристаллическом или стеклообразном состояниях диоксида кремния. Это означает, что в структуре стекла сохраняется ближний порядок в расположении анионов относительно катионов кремния, характерный для координационной структуры кристаллов.

Дальним порядком называется строго периодическое и последова­тельное расположение атомов или группировок из атомов в пространст­ве, которое обусловливает образование единой трехмерной решетки.

Если для кристаллических структур характерно наличие ближнего и дальнего порядков, то особенность строения стекол состоит в том, что в их структуре имеется ближний порядок, но отсутствует дальний поря­док в расположении координационных групп атомов. Отсутствие даль­него порядка в структуре характерно для жидкостей и аморфных тел.

Основными элементами структуры силикатных стекол являются тет­раэдры [SiО4]4, которые, соединяясь, друг с другом вершинами, способ­ны образовывать непрерывную в одном, двух, или трех измерениях про­странственную структуру (структурную сетку по Захариасену).

Протяженность сетки определяется содержанием в составе стекла диоксида кремния. Апериодическую сетку, образующуюся путем сочленения координационных полиэдров вершинами, можно рассматривать как анион сложного состава. Компоненты стекла, способные самостоятельно образовывать структурную непрерывную сетку, такие, как SiO2, и другие, принадлежат к группе стеклообразователей. Компоненты стекла, не способные самостоятельно образовывать структурную непрерывную сетку, называются модификаторами. К группе модификаторов, как правило, принадлежат оксиды элементов первой и второй групп пе­риодической системы, а также некоторых элементов других групп.

Катионы модификаторов располагаются в свободных полостях структурной сетки, компенсируя избыточный отрицательный заряд сложного аниона. Кислородное окружение катионов модификаторов формируется в соответствии с их координационными требованиями. Прочность связи модификатор — кислород значительно ниже прочности связи стеклообразователь — кислород, поэтому модификаторы не образуют прочных координационных групп. 

Координационное число катиона модификатора в стекле представ­ляет собой некоторое среднестатистическое число атомов кислорода, приходящееся на один атом модификатора. В отличие от геометрически правильных группировок координационных полиэдров стеклообразова­телей координационные группировки модификаторов могут не иметь гео­метрически правильной фигуры.

В структуре стекла различают два возможных состояния атомов кислорода: атомы, соединяющие соседние полиэдры, называют мостиковыми, а соединяющие катионы модификаторов со сложным анионом, называют немостиковыми.

Кварцевое стекло

Структурной основной единицей кварцевого стекла является кремнекислородный тетраэдр. Атом кремния окружен четырьмя атомами кислорода, расположенными симметрично в вершинах тетраэдра.

Структура кварцевого стекла выполнена из тетраэдров SiО4, сое­диненных друг с другом вершинами через атомы кислорода. В резуль­тате образуется непрерывный пространственный каркас, отличающийся от геометрически правильных решеток кристаллических модификаций кварца отсутствием дальнего порядка в расположении и ориентации тетраэдров. Тетраэдры SiО4 не образуют в пространстве геометрически правильных сочленений в виде шести членных колец, ха­рактерных для структуры высокотемпературного кристобалита.

Структурная сетка стекла выглядит как искаженная кристаллическая решетка. Искажение заключается в произвольном варьировании значений угла связи Si—О—Si между соседними тетраэдрами в структуре стекла.

Группировка [SiО4]4- имеет избыточный отрицательный заряд (-4), но каркасная сетка из тетраэдров SiО4 в целом электронейтральна, так как каждый атом кислорода связан с двумя атомами кремния. В струк­туре кварцевого стекла все атомы кислорода мостиковые.

Структуры кристаллических и стеклообразной форм диоксида кремния не являются плотноупакованными, так как тетраэдры соединяются вершинами, а не ребрами и не гранями. В кварцевом стекле имеются свободные структурные полости, ограниченные в прост­ранстве мостиковыми атомами кислорода.

Именно благодаря наличию в структуре свободных полостей, кварцевое стекло обладает наиболее высокой газопроницаемостью (гелий, водород, неон) по сравнению с другими силикатными стеклами, в со­ставе которых кроме диоксида кремния присутствуют оксиды щелочных и щелочноземельных металлов.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.056 с.