Глава 7. Ваша рыба испорчена — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Глава 7. Ваша рыба испорчена

2021-01-29 74
Глава 7. Ваша рыба испорчена 0.00 из 5.00 0 оценок
Заказать работу

 

Через два часа с письменного стола ГЕКСа соскользнул один листок бумаги. Думминг его поднял.

«Чтобы гарантировать существование Происхождения видов, нам нужно вмешаться примерно в десяти точках», — объявил он.

«Что ж, вроде не так уж и плохо», — сказал Чудакулли. — «Мы же добились рождения Шекспира, правильно?[42] Нужно просто кое-что подправить».

«Кажется, эта задача немного сложнее», — с сомнением заметил Думминг.

«Но мы можем перемещаться с помощью ГЕКСа», — возразил Чудакулли. — «Возможно, это даже будет забавно, особенно если что-то или кто-то в самом деле валяет дурака. И даже познавательно, господин Тупс».

«А еще у них довольно приличное пиво», — заметил Декан. — «А еда так просто шикарная. Помните гуся, которого нам подавали в прошлый раз? Я редко едал лучше».

«Мы вообще-то мир собираемся спасать», — сурово сказал Чудакулли. — «У нас будут дела поважнее!»

«Но обедать мы ведь будем?» — уточнил Декан.

Второй обед и полдник пролетели почти незаметно. Видимо, волшебники уже берегли место для гуся.

Перспектива долгого дня становилась все более явной. Вокруг ГЕКСа выставили мольберты. Все столы были завалены бумагами. В углу Библиотекарь устроил чуть ли не отдельный филиал библиотеки, который он продолжал пополнять книгами из отдаленных областей Б-пространства.

А волшебники переоделись и уже были готовы действовать. Решение было принято практически без обсуждений — во всяком случае, после того, как Декан упомянул гуся. ГЕКС располагал огромными возможностями по контролю за Сферой, но в деликатных ситуациях приходилось работать руками — особенно если дело касалось столовых приборов. А у ГЕКСа рук не было. К тому же, он довольно подробно объяснил, что абсолютного контроля не существует в принципе — во всяком случае, если Вселенная работает должным образом. Существуют лишь разные степени бесконтрольности. В сущности, размышлял Думминг, по отношению к Круглому Миру ГЕКС был той самой Просто Огромной Штукой. Он практически был. богом. Но даже ему было не под силу взять под контроль абсолютно все. Даже если тебе известно расположение каждой из крошечных крутящихся частиц, составляющих материю, ты не можешь знать, что одна из них сделает в следующее мгновение.

Волшебники были вынуждены отправиться туда лично. Это было им по силам. Ведь они уже делали это раньше. Ради спасения таких первоклассных поваров от вымирания они были готовы преодолеть любые трудности.

По крайней мере, с одеждой никаких проблем быть не должно. Если забыть про странные остроконечные шляпы и посохи, волшебники вполне могли пройтись по улицам Круглого Мира, не привлекая к себе лишнего внимания.

«Ну, и как мы выглядим?» — спросил Архканцлер, когда волшебники снова собрались вместе.

«Очень, по-викториански», — сказал Думминг. — «Хотя, в данный момент, точнее будет сказать по-георгиански. Ну, в общем. твид сейчас в моде. Декан, вас полностью устраивает образ епископа?»

«Разве он не в духе того времени?» — обеспокоенно спросил Декан. — «Мы пролистали книгу о нарядах, и я подумал.» Его голос затих. «Это ведь митра, да?..»

«И епископский жезл», — закончил за него Думминг.

«Видите ли, я хотел соответствовать обстановке».

«В соборе — да. Но боюсь, что, выходя на улицу, вам стоило ограничиться простым черным костюмом и гетрами. Правда, со своей бородой вы вправе делать все, что угодно, а еще можете носить шляпы, в которых без труда поместится маленький ребенок. Но на улице епископ выглядит довольно невзрачно».

«Да уж, никакого веселья», — мрачно заметил Декан.

Думминг повернулся к Ринсвинду.

«Что касается тебя, Ринсвинд, могу я спросить, почему на тебе нет ничего, кроме набедренной повязки и остроконечной шляпы?»

«Ну, понимаешь, если заранее не знаешь, во что ввязываешься, то лучше пойти голым», — сказал Ринсвинд. — «Это универсальный наряд. Он подходит к любой культуре. Честно говоря, иногда тебе даже.»

«Только костюм из твида, приятель!» — рявкнул Чудакулли. — «И никаких остроконечных шляп!». На фоне ворчания он повернулся к Библиотекарю. «А что касается вас, сэр. тоже наденьте костюм. И цилиндр. Чтобы выглядеть повыше!»

«У-ук!» — запротестовал Библиотекарь.

«Я здесь Архканцлер, сэр! Я настаиваю! И еще — думаю, тебе нужна накладная борода. И накладные брови. Возьми пример с господина Дарвина! Эти викторианцы были крайне цивилизованными людьми! Повсюду волосы! Старайся пореже опираться на руки при ходьбе, и станешь у них Премьер-Министром! Отлично, джентльмены. Собираемся здесь через полчаса!»

Волшебники собрались вместе. На полу появился круг белого света. Когда все зашли внутрь, звук, исходивший от ГЕКСа, изменился, и волшебники исчезли.

Они приземлились в торфяное болото и оказались по колено в трясине. Вокруг них взорвались пузырьки зловонного воздуха.

«Господин Тупс!» — рявкнул Чудакулли.

«Прошу прощения, сэр» — поспешно ответил Думминг. — «ГЕКС, будь добр, подними нас на два фута».

«Ладно, но мы все равно уже промокли», — проворчал Декан, когда волшебники зависли в воздухе. — «Похоже, что вы, господин Тупс, «ударили лицом в грязь»!»

«Нет, сэр, я просто хотел показать вам Чарльза Дарвина вдали от цивилизации», — объяснил Думминг. — «А вот и он…»

Из зарослей травы выскочил крупный и энергичный молодой человек, который принялся расчищать черный пруд с помощью шеста для прыжков. Шест сразу же на треть ушел в трясину, и его атлетически сложенный хозяин погрузился в грязь. Он выбрался, держа в руках небольшое водное растение. Не замечая зловонного бурления вокруг себя, он с торжествующим видов помахал этим растением своим отдаленным спутникам, не без труда вытащил шест и, шлепая, зашагал прочь.

«Он нас видел?» — спросил Ринсвинд.

«Пока нет. Это ведь молодой Дарвин», — ответил Думминг. — «Он очень любил собирать образцы живой природы. В этом веке коллекционирование пользовалось огромной популярностью среди британцев. Кости, ракушки, бабочки, птицы, другие страны. в общем, все подряд».

«О, родственная душа!» — радостно воскликнул Чудакулли. — «В его возрасте у меня была лучшая коллекция прессованных ящериц!»

«Что-то никаких биглей поблизости не видно», — мрачно заметил Ринсвинд. Без своей шляпы он чувствовал себя не в своей тарелке и все время пытался под чем-нибудь спрятаться.

Заведующий Кафедрой Беспредметных Изысканий оторвал взгляд от своего чарометра.

«Никаких магических возмущений, вообще ничего», — сообщил он, осматривая болото. «ГЕКС точно уверен? Здесь единственная странность — это мы».

«Ну что, займемся делом?» — сказал Чудакулли. — «Куда дальше?»

«ГЕКС, перенеси нас в Лондон», — сказал Думминг. — «Позиция № 7».

Казалось, что волшебники остались стоять на месте, а окружающий их ландшафт дрогнул и изменился.

Они оказались в переулке. Здесь было довольно шумно из-за звуков, доносившихся с улиц.

«Уверен, все вы ознакомились с кратким инструктажем, который я подготовил этим утром», — живо произнес Думминг.

«А ты уверен, что мы не вернулись в Анк-Морпорк?» — громко спросил Чудакулли. — «Готов поклясться, я чую запах реки!»

«Ну, в таком случае я просто пройдусь по наиболее важным моментам», — устало сказал Думминг. — «Список ключевых событий, способных помешать карьере Дарвина.»

«Я помню про гигантского кальмара», — вызвался Ринсвинд.

«С гигантским кальмаром ГЕКС может справиться сам», — объяснил Думминг.

«Жаль, а я этого так ждал», — сказал Чудакулли.

«Нет, сэр», — Думминг вложил в ответ все свое терпение. — «Нам нужно уладить проблемы с людьми. Вы не забыли? В прошлый раз мы решили, что было бы неэтичным доверить это ГЕКСу. Помните дождь из упитанных женщин?[43]»

«На самом деле этого так и не случилось», — мечтательно произнес Преподаватель Современного Руносложения.

«Верно», — твердо сказал Чудакулли. — «Оно и к лучшему. Ведите нас, господин Тупс».

«Так много дел, так много дел», — бормотал Думминг, листая бумаги. — «Думаю, лучше сделать все по порядку. так что сначала мы должны позаботиться о том, что кухарка господина Аввакума Сольцера[44] избавится от рыбы».

Улица состояла из домов весьма состоятельного вида. Заднюю дверь им открыл мальчик, который прислуживал при посудомоечной. Думминг Тупс приподнял свою очень высокую шляпу.

«Мы бы хотели поговорить.», — он сверился с планшетом, — «с миссис Бодди», — сказал он. «Насколько мне известно, она здесь работает кухаркой, да? Скажи ей, что мы из Комитета по Санитарному Благополучию Населения, и дело срочное, так что беги скорее!»

«Надеюсь, ты знаешь, что делаешь, Тупс», — прошипел Чудакулли, когда мальчик убежал.

«Я абсолютно уверен, Архканцлер. По словам ГЕКСа, причинно-следственные связи таковы, что — а, миссис Бодди?»

Он обращался к худощавой женщине обеспокоенного вида, которая, вытирая руки о передник, надвигалась на них из полумрака, заполнявшего здание изнутри.

«Это я, сэр», — ответила кухарка. — «Мальчик сказал, что вы насчет гигиены?»

«Миссис Бодди, этим утром вам доставляли рыбу?» — строго спросил Думминг.

«Да, сэр. Отличный кусок хека». Внезапно в ее взгляде появилась неуверенность. «С ним же все в порядке, да?»

«Увы, нет, миссис Бодди!» — сообщил ей Думминг. — «Мы только что были у торговца рыбой. Весь его запас хека испорчен. Нам поступило множество жалоб. В том числе от ближайших родственников, миссис Бодди!»

«О, как же нам теперь спастись!» — воскликнула кухарка. — «Я уже начала его готовить! И запах был в порядке, сэр!»

«Слава Богу, значит, рыба не успела никому навредить», — сказал Думминг.

«Может, отдать ее кошке?»

«А эта кошка вам нравится?» — спросил Думминг. — «Нет, заверните рыбу в бумагу и немедленно принесите нам! Я уверен, что господин Сольцер отнесется к вам с пониманием, если вы подадите ему холодную ветчину, которая осталась со вчерашнего дня».

«Дассэр!» — кухарка убежала и вскоре вернулась с пакетом очень горячей и очень мокрой рыбы. Думминг забрал пакет и сунул его Ринсвинду.

«Тщательно вымойте сковороду, миссис Бодди!» — предупредил ее Думминг, в то время как Ринсвинд пытался удержать рыбу в руках. «Джентльмены, нам пора!»

И он очень быстро зашагал по улице — остальные волшебники тащились следом. Затем он резко свернул в переулок как раз перед тем, как раздался крик: «Сэр? Сэр? Откуда вы узнали про холодную ветчину?»

«Позиция № 9, ГЕКС», — сказал Думминг. — «И убери эту рыбу, пожалуйста!»

«Что все это значит?» — спросил Чудакулли. — «Зачем мы забрали рыбу у этой бедной женщины?»

Ринсвинд ойкнул, когда рыба исчезла у него на глазах.

«Завтра господин Сольцер отправится, эм, на встречу с несколькими предпринимателями», — пока Думминг объяснял, под ногами у волшебников появился белый круг. — «Одним из них окажется известный промышленник Джозайя Веджвуд. Господин Сольцер расскажет ему о своем сыне Джеймсе, который в настоящее время сотрудничает с флотом. Господин Сольцер расскажет, что это помогло молодому человеку стать настоящим мужчиной. А господин Веджвуд проявит к этому интерес и решит, что длительное морское путешествие в приличной компании может принести пользу молодому человеку, готовящемуся вступить во взрослую жизнь. Во всяком случае, теперь именно так и будет. Если бы господин Сольцер съел ту рыбу, то из-за плохого самочувствия никуда бы не поехал».

«Ну что ж, это хорошо для господина Сольцера, но к нам-то это какое имеет отношение?» — спросил Декан.

Воздух дрогнул. «Господин Веджвуд приходится дядей Чарльзу Дарвину», — ответил Думминг. — «И он окажет влияние на карьеру своего племянника. Что же касается нашей следующей цели.»

«Доброе утро! Миссис Соловей?»

«Да?» — ответила женщина, в голосе которой прозвучало сомнение. Она обвела взглядом группу стоящих перед ней посетителей, и ее внимание привлек очень бородатый человек, руки которого касались земли. Горничная, открывшая дверь, стояла позади нее и встревоженно наблюдала за происходящим.

«Миссис Соловей, меня зовут мистер Тупс. Я секретарь благотворительной организации «Миссия Глубоководных Путешественников». Насколько мне известно, мистер Соловей собирается вскоре принять участие в опасном путешествии к водам Южной Америки, чтобы поближе познакомиться с их штормовыми волнами, запутанными морскими течениями и гигантскими поедающими корабли кальмарами, которые кишат в тамошних морях, верно?»

Оторвав взгляд от Библиотекаря, женщина нахмурилась.

«Мне он ничего не говорил о гигантских кальмарах», — сказала она.

«В самом деле? Жаль это слышать, миссис Соловей. Брат Книгмейстер[45]», — с этими словами Думминг похлопал Библиотекаря по плечу, — «мог бы вам об этом рассказать лично, если бы не жуткое происшествие, из-за которого он лишился дара речи».

«У-ук!» — печально произнес Книгмейстер.

«Неужели?» — сказала женщина, крепко стиснув зубы. — «Не угодно ли джентльменам пройти в гостиную?»

Прошло полчаса. «Ну что ж, печенье было вкусным», — заметил Декан, когда волшебники вышли на улицу. «А теперь, Тупс, не мог бы ты объяснить, зачем мы это сделали?»

«С удовольствием, Декан, и позвольте также заметить, что ваш рассказ о морской змее пришелся как нельзя кстати», — сказал Думминг. — «А вот ты, Ринсвинд, со своими летучими рыбами-убийцами явно переборщил, как мне кажется».

«Я ничего не выдумывал!» — воскликнул Ринсвинд. — «У них зубы были, как.»

«Ну ладно, не важно. Дарвин был вторым претендентом на эту должность на борту Бигля», — пояснил Думминг. — «Изначально выбор капитана пал на мистера Соловья. Но теперь история будет развиваться иначе, потому что миссис Соловей отговорила своего мужа от этого путешествия. Он изменит свои планы сегодня вечером — примерно через пять минут после того, как вернется домой».

«Очередная хитрая уловка?» — спросил Чудакулли.

«Честно говоря, я этим очень доволен», — признался Думминг.

«Хмм», — сказал Чудакулли. Хитрость в лице молодого волшебника не всегда находит одобрение у его старших коллег — «Очень умно, Тупс. За вами нужен глаз да глаз».

«Благодарю, сэр. Теперь я бы хотел задать вопрос: кто-нибудь из присутствующих разбирается в судостроении? Хотя, возможно, нам это не понадобится. ГЕКС, будь добр, перенеси нас в Портсмут. Бигль находится на ремонте. Вам потребуется сыграть роль морских инспекторов — я, хаха, уверен, что у вас это прекрасно получится. По правде говоря, вы станете самыми наблюдательными инспекторами за всю историю. ГЕКС, позиция № 3, пожалуйста».

 

Глава 8. Вперед в прошлое

 

Итак, волшебники успешно приступили к делу. Располагая мощью ГЕКСа, они могут свободно перемещаться по всей истории Круглого Мира. Мы рады, что они способны на это внутри художественного произведения, но можем ли мы добиться того же в реальности?

Чтобы ответить на этот вопрос, нам нужно понять, как выглядит машина времени с точки зрения общей теории относительности. После этого мы сможем обсудить ее конструкцию.

Путешествовать в будущее легко — нужно просто ждать. Сложно вернуться обратно. Машина времени позволяет частице или объекту переместиться в собственное прошлое, а значит, соответствующая мировая линия, представленная времениподобной кривой, должна замыкаться в петлю. Таким образом, машина времени — это просто замкнутая времениподобная кривая, или сокращенно — ЗВК. Теперь вопрос «Можно ли путешествовать во времени?» будет звучать так: «Возможно ли существование ЗВК?».

В плоском пространстве-времени Минковского таких кривых нет. Ни у одного события конус прошлого не пересекается с конусом будущего (единственная общая точка — это само событие, но его мы учитывать не будем). Двигаясь вдоль плоской поверхности и не отклоняясь от севера более, чем на 450, вы никогда не сможете незаметно подобраться к себе с южной стороны.

Однако световые конусы прошлого и будущего могут пересекаться в других типах пространства-времени. Первым, кто обратил на это внимание, был Курт Гедель, хорошо известный своими фундаментальными работами в области математической логики. В 1949 году он разработал релятивистское описание вращающейся вселенной и обнаружил, что будущее и прошлое любой точки пересекаются друг с другом. Вы можете начать свой путь где угодно и когда угодно и, двигаясь в будущее, оказаться в собственном прошлом. Однако, данные наблюдений указывают на то, что наша Вселенная не вращается, и вряд ли нам удастся построить машину времени, раскрутив неподвижную вселенную (особенно изнутри). Вот если бы волшебники придали Круглому Миру вращение.

Самый простой способ соединить прошлое с будущим — свернуть пространство-время Минковского в цилиндр по «вертикальной» оси времени. В этом случае время становится цикличным — как в индуистской мифологии, согласно которой Брахма заново создает Вселенную по прошествии очередной кальпы — промежутка времени длиной в 4,32 миллиарда лет. Несмотря на то, что поверхность цилиндра выглядит искривленной, соответствующее пространство-время на самом деле плоское — по крайней мере, с точки зрения гравитации. Когда лист бумаги сворачивается в цилиндр, он не претерпевает никаких искажений. Из него можно снова сделать плоский лист, и на бумаге не останется ни одной морщинки или складки. Муравей, движения которого ограничены поверхностью цилиндра, не заметит какого-либо искривления пространства, потому что расстояния на  самой поверхности остаются неизменными. Иначе говоря, локальная метрика не меняется. Меняется только глобальная геометрия, или топология,  пространства-времени.

Свернутое пространство-время Минковского позволяет легко доказать, что в пространстве-времени, удовлетворяющем уравнениям Эйнштейна, могут существовать ЗВК и, следовательно, путешествие во времени не противоречит известной нам физике. Это, однако, не означает, что путешествия во времени возможны на самом деле. Существует довольно важное различие между тем, что возможно математически, и тем, что реализуемо в физическом мире.

Пространство-время, возможное с точки зрения математики, должно удовлетворять уравнениям Эйнштейна. Возможность физической реализации означает, что пространство-время способно существовать в нашей Вселенной или может быть создано в ней искусственно. Заявление о том, что свернутое пространство Минковского реализуемо физически, не имеет под собой каких-либо серьезных оснований: если время изначально не было циклическим, вряд ли Вселенную можно было бы легко превратить в цилиндр, а верят в цикличность времени очень немногие (не считая жителей Индии). Поиск пространства-времени, обладающего ЗВК, и при этом реализуемого физически, сводится к поиску более реалистичных топологий. Существует множество топологий, допустимых с точки зрения математики, однако (представьте, что вы спрашиваете дорогу у ирландца) — до некоторых из них просто невозможно добраться.

Но — обо всем по порядку. Начнем с черных дыр. Впервые их существование было предсказано классической механикой Ньютона, в соответствии с которой скорость движения объектов ничем не ограничена. Каким бы сильным не было гравитационное поле физического тела, частицы способны избежать его притяжения — при условии, что движутся быстрее определенной величины, известной как «первая космическая скорость». Для Земли эта скорость составляет 7 миль/с (11 км/с), для Солнца — 26 миль/с (41 км/с). В статье, представленной Королевскому Обществу в 1783 году, Джон Мичелл отмечает, что понятие «первой космической скорости» в сочетании с ограниченностью скорости света наводит на мысль о том, что достаточно массивное тело не сможет излучать свет — в силу того, что первая космическая скорость превысит скорость света. В 1796 году Пьер-Симон де Лаплас высказал ту же идею в свой работе «Изложение системы мира». В воображении этих ученых Вселенная могла быть наполнена объектами, которые по своему размеру превосходили звезды, но были совершенно черными.

Они опередили свое время на целое столетие.

Первый шаг в сторону релятивистского решения этой задачи был сделан в 1915 году, когда Карл Шварцшильд получил решение уравнений Эйнштейна для гравитационного поля, образованного массивной сферой в вакууме. На неком критическом расстоянии от центра сферы его решение вело себя довольно странным образом — теперь это расстояние называется радиусом Шварцшильда. Если вам интересно, то он равен удвоенному произведению массы звезды и гравитационной постоянной, деленной на квадрат скорости света.

В случае Солнца и Земли радиус Шварцшильда составляет 1,2 мили (2 км) и 0,4 дюйма (1 см) соответственно — их границы находятся на недоступной для нас глубине, где они не смогут привести к каким-нибудь неприятностям. Поэтому значимость этого странного математического поведения. и даже его смысл оставались неясными.

Что произойдет со звездой, которая — из-за своей огромной плотности — окажется внутри собственного радиуса Шварцшильда?

В 1939 году Роберт Оппенгеймер и Хартланд Снайдер смогли доказать, что такая звезда сожмется под действием своего гравитационного притяжения. Точнее, произойдет коллапс целой области пространства-времени, и возникнет регион, из которого не сможет вырваться ни материя, ни даже свет. Так в физике появилось потрясающее новое понятие. Свое имя оно получило в 1967 году, когда Джон Арчибальд Уилер придумал термин черная дыра.

Как черная дыра развивается с течением времени? Когда первоначальный комок материи уменьшается до радиуса Шварцшильда, он продолжает сжиматься до тех пор, пока вся его масса — за конечное время — не схлопнется в одну точку, которая называется сингулярностью. При этом наблюдать сингулярность снаружи невозможно: она находится внутри радиуса Шварцшильда, который служит «горизонтом событий», отделяющим наблюдаемую — то есть излучающую свет — часть пространства от ненаблюдаемой области, удерживающей свет внутри себя.

Если бы мы наблюдали за коллапсом черной дыры со стороны, то увидели бы, как размер звезды приближается к ее радиусу Шварцшильда, но никогда его не достигает. По мере сжатия скорость коллапса, с точки зрения стороннего наблюдателя, стремится к скорости света, поэтому в силу релятивистского замедления времени коллапс покажется такому наблюдателю бесконечно долгим процессом. Свет, излучаемый звездой, будет все больше и больше смещаться в красную часть спектра. Такой объект стоило бы назвать «красной дырой».

Черные дыры идеально подходят для конструирования пространства-времени. Черную дыру можно «вклеить» в любую вселенную, обладающую асимптотически плоскими областями — включая и нашу собственную[46]. Благодаря этому, в нашей Вселенной топология черных дыр вполне возможна с физической точки зрения. Еще более вероятной она становится в силу описанного сценария гравитационного коллапса — для начала нужно просто найти достаточно большое скопление материи наподобие нейтронной звезды и центра галактики. Технологически развитое общество могло бы создавать собственные черные дыры.

Однако в черных дырах нет замкнутых времениподобных кривых, так что с путешествиями во времени они нам не помогут. Пока что. Но мы уже приближаемся к цели. Следующий шаг опирается на обратимость уравнений Эйнштейна во времени: у каждого решения есть пара, которая отличается от оригинала только тем, что время движется в обратном направлении. Черная дыра, обращенная во времени, называется белой дырой. Если горизонт событий черной дыры — это барьер, который не выпускает частицы наружу, то горизонт событий белой дыры — это барьер, который не пропускает частицы внутрь; при этом новая частица может появиться из него в любой момент. Иначе говоря, снаружи белая дыра выглядела бы как внезапный взрыв материи в масштабе целой звезды, расходящийся от обращенного во времени горизонт событий.

Белые дыры могут показаться довольно странным явлением. Разумно предположить, что первоначальное скопление материи при достаточной плотности начнет сжиматься и превратится в черную дыру; но почему сингулярность, расположенная внутри белой дыры, которая оставалась неизменной с самого начала времен, должна ни с того, ни с сего извергнуть из себя звезду? Возможно, дело в том, что внутри белой дыры время движется вспять, а значит, причинно-следственные связи направлены из будущего в прошлое? Давайте просто согласимся с тем, что белые дыры возможны с математической точки зрения и отметим, что они тоже асимптотически плоские. Таким образом, если бы мы знали, как создать белую дыру, то могли бы аккуратно вклеить ее в нашу Вселенную по аналогии с черной.

Но это еще не все: белую дыру можно приклеить к черной. Для этого нужно вырезать области пространства-времени, ограниченные их горизонтами событий, а затем совместить эти горизонты друг с другом. В результате получается нечто вроде трубы. Через такую трубу материя может двигаться только в одном направлении, заходя с со стороны черной дыры, а выходя со стороны белой. Это своего рода клапан для материи. А поскольку физические частицы способны преодолеть этот клапан, движение внутри него описывается времениподобной линией.

Оба конца такой трубы можно встроить в любую асимптотически плоскую область произвольного пространства-времени. Например, можно соединить нашу Вселенную с какой-нибудь другой; или же соединить туннелем две точки нашей Вселенной, при условии, что они расположены вдали от скоплений материи. В результате мы получим червоточину. Расстояние внутри самой червоточины довольно мало, в то время как в нормальном пространстве-времени расстояние между ее концами ограничено только нашим желанием.

Червоточина — это короткий путь сквозь Вселенную.

Правда, это не перемещение во времени, а перенос материи в пространстве.

Но это не имеет значения, потому что мы почти у цели.

Ключ к перемещению во времени с помощью червоточин кроется в пресловутом парадоксе близнецов, который физик Поль Ланжевен описал в 1911 году. Напомним, что в соответствии с теорией относительности ход времени замедляется по мере увеличения скорости движения и прекращается совсем, когда она достигает скорости света. Этот эффект называется релятивистским замедлением времени. Приведем цитату из первой части «Науки Плоского Мира»:

 

Предположим, что Розенкранц и Гильденштерн родились в один и тот же день.

Розенкранц все время остается на Земле, а Гильденштерн отправляется в путешествие с околосветовой скоростью и возвращается обратно. Из-за эффекта замедления времени для Гильденштерна прошел, скажем, один год, в то время как для Розенкранца — 40 лет. В итоге Гильденштерн будет на 39 лет моложе своего брата-близнеца.

 

Парадокс в том, что эта ситуация, на первый взгляд, вызывает у нас недоумение: в системе отсчета Гильденштерна со скоростью света умчался не он, а Розенкранц. А значит, исходя из тех же соображений, именно Розенкранц должен быть на 39 лет моложе Гильденштерна, так? Нет — нас вводит в заблуждение видимость симметрии. В отличие от системы отсчета Розенкранца, система Гильденштерна испытывает ускорения и торможения — особенно в тот момент, когда он разворачивается, чтобы вернуться домой. В теории относительности ускорение играет важную роль.

В 1988 году Майкл Моррис, Кип Торн и Ульви Юртсевер пришли к выводу, что червоточины в сочетании с парадоксом близнецов позволяют создать ЗВК. Идея состоит в том, чтобы закрепить белый конец червоточины, а черный перемещать туда-обратно с околосветовой скоростью. Во время движения черный конец испытывает эффект замедления времени, поэтому для наблюдателя, который движется вместе с ним, время течет медленнее. Представьте себе мировые линии, соединяющие две червоточины в обычном пространстве так, что наблюдатели на каждом конце фиксируют одинаковый ход времени. Сначала эти линии практически горизонтальны, то есть не являются времениподобными, а значит, не соответствуют движению каких-либо реальных частиц. Однако со временем линии приближаются к вертикали и в конечном счете становятся времениподобными. Как только нам удается пройти этот «временной барьер», мы можем перемещаться между белым и черным концами червоточины, используя обычное пространство — вдоль времениподобной кривой. Поскольку червоточина — это короткий путь, ее можно пересечь за короткое время и практически мгновенно преодолеть пространство, отделяющее черный конец от белого. В итоге вы вернетесь в исходную точку, но окажетесь в прошлом.

Это и есть путешествие во времени.

Выждав нужное время, вы сможете превратить свою мировую линию в ЗВК и оказаться в том же месте и времени, с которого начали свое путешествие. Не назад в будущее, а вперед — в прошлое. Чем дальше в будущем находится исходная точка, тем дальше вы сможете переместиться назад во времени. Правда, у этого метода есть один недостаток: ваши путешествия в прошлое ограничены временным барьером, который возникает через некоторое время после создания червоточин. Так что поохотиться на динозавров или побегать за бабочками Мелового периода вам не удастся.

Можем ли мы в действительности создать одно из таких устройств? Можно ли пройти через червоточину?

В 1966 году Роберт Джероч нашел способ, который в теории позволяет создать червоточину с помощью гладкой деформации пространства времени, без каких-либо разрывов. Правда, есть одна сложность: на определенном этапе сборки ход времени настолько искажается, что червоточина временно начинает действовать, как машина времени, и оборудование, используемое ближе к концу сборки, переносится к ее началу. Инструменты рабочих могут переместиться в прошлое именно в тот момент, когда они решат, что работа закончена. Тем не менее, правильно составленный график работ, вероятно, решает эту проблему. Технологически развитое общество, вероятно, способно конструировать черные и белые дыры и перемещать их с помощью сильных гравитационных полей.

Однако создание червоточины — это не единственная проблема. Нужно еще удержать ее в открытом состоянии. Основная трудность связана с «эффектом кошачьей дверцы»: когда некоторый объект проходит сквозь червоточину, последняя стремится захлопнуться и «прищемить ему хвост». Чтобы этого не произошло, объект, как оказалось, должен двигаться быстрее скорости света, так что приходится искать другое решение. Любая времениподобная линия, которая начинается у входа в червоточину, должна входить в будущую сингулярность. Нельзя преодолеть сингулярность и добраться до выхода, не превысив скорость света.

Традиционный подход к решению этой проблемы состоит в том, чтобы заполнить червоточину «экзотической» материей, создающей огромное отрицательное давление наподобие растянутой пружины. Она отличается от антиматерии, поскольку представляет собой форму отрицательной энергии, в то время как энергия антиматерии положительна. С точки зрения квантовой механики, вакуум — это не пустота, а бурлящее море элементарных частиц, которые непрерывно появляются и исчезают. Нулевая энергия содержит в себе все эти флуктуации, а значит, ослабив их, мы сможем снизить энергию до отрицательного уровня. Достичь этого позволяет, к примеру «эффект Казимира», открытый в 1948 году: между двумя близко расположенными металлическими пластинами возникает состояние отрицательной энергии. Данный эффект был зафиксирован в экспериментах, но оказался довольно слабым. Чтобы получить достаточное количество отрицательной энергии, потребуются пластины размером с галактику. К тому же твердые, чтобы интервал между ними оставался неизменным.

Есть и другой вариант — магнитная червоточина. В 1907 году геометр Туллио Леви-Чивита доказал, что в рамках общей теории относительности магнитное поле может вызывать искажения пространства. Магнитное поле обладает энергией, энергия эквивалентна массе, а масса задает кривизну пространства. Более того, ему удалось вывести точное решение уравнений поля Эйнштейна, которое он назвал «магнитной гравитацией». Проблема состояла в том, что получения наблюдаемого эффекта требовалось магнитное поле, в квинтиллион раз превышающее то, которое можно было получить в лаборатории. Его идея не привлекала серьезного внимания до 1995 года, когда Клаудио Макконе понял, что Леви-Чивита по сути изобрел магнитную червоточину. Чем сильнее магнитное поле червоточины, тем сильнее скручивается ее горловина. Размер червоточины с магнитным полем лабораторного уровня был бы просто огромным — около 150 световых лет в поперечнике. Причем лаборатории пришлось бы построить по всей ее длине. Магнитное поле гигантской мощности нужно как раз для того, чтобы создать небольшую червоточину. Сильные магнитные поля могут возникать на поверхности нейтронных звезд, поэтому Макконе предположил, что магнитные червоточины стоит искать именно там. К чему все эти усилия? Дело в том, что для поддержания такой червоточины в открытом состоянии экзотическая материя не нужна.

Возможно, более подходящим решением могла бы стать вращающаяся черная дыра, которая обладает не точечной, а кольцевой сингулярностью. В этом случае путешественник может пройти через кольцо, минуя сингулярность. Анализ уравнений Эйнштейна указывает на то, что вращающаяся черная дыра соединена с бесконечным числом областей пространства-времени. Одна из них должна находиться в нашей Вселенной (при условии, что нам удастся создать в ней вращающуюся черную дыру), но другие вполне могут выходить за ее пределы. За кольцевой сингулярностью располагаются антигравитационные вселенные, в которых расстояния измеряются отрицательными величинами, а материя взаимно отталкивается друг от друга. Через червоточину можно проложить вполне законный (не требующий сверхсветовых скоростей) маршрут к любому из ее альтернативных выходов. Таким образом, если мы воспользуемся вращающейся черной дырой вместо червоточины и сможем разогнать ее входы и выходы до околосветовых скоростей, в нашем распоряжении окажется куда более практичная машина времени — ей мы сможем пользоваться, не рискуя столкнуться с сингулярностью.

Существуют и другие машины времени, основанные на парадоксе близнецов, но все они ограничены скоростью света. Если бы мы, как герои «Звездного пути», смогли превысить скорость света с помощью пространственно-деформирующего двигателя, то эти машины лучше бы справлялись со своей задачей и, вероятно, оказались бы более простыми в постройке и эксплуатации.

Но ведь теория относительности это запрещает, так?

Нет.

Движение со сверхсветовой скоростью запрещено в специальной теории относительно. Но общая теория относительности, как оказалось, такое движение разрешает. Удивительно то, что решение этой проблемы совпадает со стандартным заумным объяснением, к которому прибегают многочисленные авторы научно-фантастических книг, знакомые с релятивистскими ограничениями, но тем не менее желающие оснастить свои космические корабли сверхсветовыми двигателями. «Теория относительности запрещает материи двигаться быстрее света», — говорят они, — «но она не запрещает сверхсветового движения пространства». Предположим, что космический корабль находится в специальной области пространства и относительно нее остается неподвижным. Законы Эйнштейна при этом не нарушаются. Теперь нужно просто разогнать эту часть пространства — вместе с космическим кораблем — до сверхсветовой скорости. Вот и все!

Ха-ха, звучит довольно забавно. Вот только.

Именно такое решение применительно к общей теории относительности в 1994 году предложил Мигель Алькубьерре Мойя. Он доказал, что у уравнений Эйнштейна есть решения, описывающие подвижный пузырь, созданный за счет локальной «деформации» пространства-времени. Пространство сжимается перед пузырем и расширяется сзади. Если внутрь пузыря поместить космический корабль, он сможет «плыть» на гравитационной волне, будучи надежно защищенным статической оболочкой локального пространства-времени. Скорость корабля по отн


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.1 с.