Инкубатор коллапсаров из далекого будущего — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Инкубатор коллапсаров из далекого будущего

2020-02-15 145
Инкубатор коллапсаров из далекого будущего 0.00 из 5.00 0 оценок
Заказать работу

Возможно, когда‑нибудь наша цивилизация научится подводить к микродырам вакуума мощные потоки энергии, увеличивая их размеры. Тогда из них можно будет конструировать разнообразные транспортные системы для телепортаций (мгновенных перемещений) во времени и пространстве.

 

Застывшая звезда – коллапсар

Свойства коллапсаров просто удивительны, например, наброшенную на черную дыру петлю нельзя стянуть в точку. Дело в том, что поле тяготения замерзшей звезды настолько велико, что время вблизи нее не просто замедляется, как около любого массивного тела, а практически останавливается. Естественно, что и все процессы, в том числе и стягивание петли, замирают, становясь бесконечно долгими. А это и является первым признаком входа в подпространственный туннель.

 

КАНАЛ МЕЖДУ МИРАМИ

 

Вспомним замечательный роман Карла Сагана. Еще задолго до исследований коллектива теорфизиков Кипа Торна, сразу же после того, как Эйнштейн создал общую теорию относительности, австрийский физик Л. Фламм нашел математические решения, описывающие два мира, соединенные подпространственным каналом. Позднее такие решения изучали сам Эйнштейн и особенно подробно – американский физик Дж. Уилер в связи с теорией элементарных частиц и пенообразного микропространства. Все эти работы завершились неутешительным выводом: образовавшись естественным или искусственным путем, соединяющий миры канал будет сначала расширяться до некоторого максимального размера, а затем сожмется в тончайшую нить.

Затем, как мы уже знаем, к расчетам приступил Торн. Результат вычислений получился именно таким, как и предсказывали герои романа, – изготовленный из антигравитирующего вещества переходной канал был устойчив, а действующие в нем силы лишь незначительно отличались от земного тяготения. Правда, для этого конструкция канала должна удовлетворять определенным условиям, но это уже дело техники. Важно, что физические законы не запрещают создания таких конструкций, остальное представляет собой задачу для космических инженеров будущего, если, конечно, физики смогут своевременно предоставить в их распоряжение экзотический антигравитирующий материал с отрицательной энергией.

А можно ли создать такое вещество, которое будет обладать свойством антигравитации и иметь отрицательную энергию? Энергия вещества слагается из энергии, связанной с массой составляющих его частиц, и энергии давления и натяжений, связанной с внутренними взаимодействиями. В одних случаях – скажем, в баллоне сжатого газа – она положительна, в других, например в ядре атома железа, отрицательна; как известно, для расщепления ядра на части необходимо совершить определенную работу. Однако во всех обычных веществах – твердых, жидких, газообразных – энергия, связанная с массой, больше энергии взаимодействий и суммарная энергия вещества всегда положительна. В экзотическом же веществе, которое нужно для сооружения червоточин, первое место занимает отрицательная энергия внутренних натяжений.

Еще совсем недавно физики были убеждены в том, что подобных веществ просто не бывает. И это, по‑видимому, так, если оставаться в рамках классической, доквантовой физики. Однако в области квантовых явлений ситуация иная. Благодаря всплескам случайных (спонтанных) полей, рождению пар частиц и античастиц на очень короткое время энергия может стать несколько большей или меньшей ее среднего, классического значения. Это иногда называют «кипением» физического вакуума, где вблизи нулевого уровня энергии всегда есть области с положительной и отрицательной энергией.

Расчеты Торна и его коллег показали, что если вход и выход подпространственного канала окружить шарообразным металлическим экраном, то соответствующее снижение энергии вакуума внутри канала вполне достаточно для того, чтобы удержать его от схлопывания и сделать проходимым для путешественников. Конечно, проблемы этим не исчерпаны. Нужно еще придумать сам способ построения кротовых нор. Может, для этого придется воспользоваться гравитационным коллапсом массивного тела, так, как это имеет место при образовании канала коллапсара, прикрывая образующиеся в пространстве воронки металлическими заглушками, которые предохранят от полного схлопывания.

 

МАШИНЫ ВРЕМЕНИ

 

Не успели затихнуть бурные дискуссии вокруг машин времени из замерзших сколлапсировавших звезд (иногда их называют Т‑агрегаты Сагана – Торна), как появилась теоретическая работа больших энтузиастов хронофизики – теоретика Давида Дойча и философа Майкла Локвуда. Авторы не только рассмотрели различные варианты путешествий во времени, но и предложили оригинальные решения для возникающих парадоксов.

Вот один из них, широко распространенный в научной фантастике, например, он встречается в романе Айзека Азимова «Конец Вечности». Итак, литературный критик, увлеченный творчеством модного писателя, отправляется в прошлое и посещает автора еще до написания им прославленных произведений. Он показывает его будущие сочинения, а тот, не поверив критику, присваивает свои же книги, приобретая тем самым известность и славу. Парадоксальный логический круг замыкается, ведь трудно понять – кто же написал упомянутые книги, если они бесконечно циркулируют по кругу времени из будущего в прошлое и обратно. Следующий круг временных парадоксов у Азимова связан с самим изобретателем машины времени, являющейся основой организации «Вечность» и чертежи которой сама эта «Вечность» доставляет ему из будущего.

Все эти парадоксы, привлекшие внимание ученых, философов и писателей после выхода романа Герберта Уэллса «Машина времени», породили устойчивое мнение, что такие путешествия принципиально невозможны. Впрочем, теория относительности не отрицает возможность путешествия в будущее. Для этого необходимо совершить полет в космос с околосветовой скоростью. Тогда путешественники могут вернуться через много лет более молодыми, чем их сверстники, оставшиеся на Земле. Но теория относительности не допускает путешествий в прошлое с нарушением принципов причинности.

Как вообще объясняет физика невозможность подобных нарушений? В теории относительности положение любого объекта описывается четырьмя координатами – тремя пространственными и одной временной. Эти четыре координаты указывают так называемую мировую точку в пространстве Минковского (напомним, что Герман Минковский был учителем, а впоследствии и соавтором Эйнштейна). При движении объекта получается извилистая траектория, называемая мировой линией. Любопытно, что с чисто пространственно‑временной точки зрения вся биография человека изображается таким вот извилистым червячком (а не линией, ведь тело человека занимает определенный объем), хвост которого совпадает с местом и временем его рождения, а передний конец непрерывно ползет вперед и вперед.

Квантовая физика описывает поведение элементарных частиц статистически. Эта врожденная «статистичность» микрообъектов является одной из самых трудных загадок природы. На микроуровне в любой момент времени можно указать лишь вероятность того или иного физического процесса. Этот вывод очень трудно осознать, и даже великий Эйнштейн до самого конца жизни пытался его оспорить и найти наглядное объяснение этой загадочной статистичности.

Одна из самых необычных попыток объяснить вероятностный характер квантовой механики была предпринята в середине прошлого века американским физиком Хью Эвереттом, который предложил теорию «множественных вселенных». Согласно этой теории, существует не одна, а сразу множество вселенных, в точности подобных нашей по физическому составу материальных тел. Если мы наблюдаем за распадом какого‑то радиоактивного элемента и видим, что этот распад произошел, скажем, через 5 минут, то это верно только для данной вселенной. В другой, «параллельной» вселенной его копия распадется через 10 минут, а в третьей – через 15. Иными словами, вероятность распада соответствует множеству вселенных, в которых копия распадается через данное время; сам же радиоактивный элемент ведет себя вполне однозначно и никакой статистичностью не обладает.

С самого начала вокруг теории Эверетта возникла бурная дискуссия. Ведь для тех квантовых расчетов, которыми пользуются физики при описании своих экспериментов с элементарными частицами и при создании различных квантовых приборов, совершенно безразлично, верна теория Эверетта или нет. Но вот для квантовой гравитации, которой занимаются Хокинг и Торн, такая теория может означать очень многое.

Так, она может легко разрешить парадоксы путешествий во времени. Например, в случае романа Азимова точка встречи критика и писателя представляет собой особый узел Мультивселенной, в котором сходится множество вселенных‑копий. В зависимости от того, какое действие произведет герой в прошлом, он и все его окружение оказываются той или иной из этих копий. Но прошлое и будущее в каждой из этих копий будет различным (рис. 29 цв. вкл.).

Взгляд в прошлое

Вернуться в прошлое и не вызвать логических парадоксов пока можно только на «астрономической машине времени». Сильные телескопы способны дать нам изображение галактик, звезд и планет миллиарды лет назад.

 

УДИВИТЕЛЬНЫЕ ФРИДМОНЫ

 

Видный советский физик‑теоретик академик Моисей Александрович Марков создал математический образ подобного мира и назвал такие образования фридмонами – в честь впервые указавшего на возможность их существования знаменитого математика А. А. Фридмана.

Полностью замкнутый мир никоим образом по идее не проявляет себя вовне: из него не проникают наружу даже световые лучи. Значит, снаружи он должен представлять собой для стороннего наблюдателя нечто, не имеющее ни размеров, ни массы, ни электрического заряда. Таким образом, в нашем воображении вырисовывается совершенно фантастическая картина. Быть может, и наша Вселенная со всеми ее солнцами, млечными путями, туманностями, квазарами – всего лишь один из фридмонов. Впрочем, фридмоны не обязательно должны заключать в себе только гигантские мироздания. Их содержимое может быть и более скромным: например, содержать в себе одну лишь галактику, звезду…

Если исходить из теории фридмонов, то получается, что любая элементарная частица в принципе может оказаться входом в иные миры. Проникнув через ее поверхность, мы можем очутиться в иной Вселенной с трудновообразимым содержимым, причудливыми галактиками, населенными странными цивилизациями. Оглянувшись же назад, мы бы увидели, что наша родная Вселенная сжалась до микроскопических размеров. Если бы мы захотели вернуться назад, то пришлось бы снова проделать весь путь по коридору между мирами. Путешествуя по различным фридмонам, мы встречали бы каждый раз новую реальность, и наше путешествие по иным мирам могло бы продолжаться до бесконечности. Интересно, что такие путешествия могли бы привести не только к перемещениям в пространстве, но и к перемещениям во времени.

Еще два с половиной тысячелетия назад философы стали задаваться вопросом: что будет, если дробить вещество все мельче и мельче? Есть ли пределы дробления и каковы наименьшие размеры вещества? Это была, пожалуй, одна из самых трудных, поистине головокружительных проблем.

Сейчас физики интенсивно исследуют сверхмалые элементарнейшие сущности (частицами их назвать уже затруднительно) – кварки. Правда, никто пока еще не предложил реальных методов их наблюдения, которые однозначно бы ответили на вопрос: существуют ли кварки на самом деле? Естественно, ученым очень хочется, чтобы они существовали. Кварки ныне почти единодушно признаны фундаментальными кирпичиками материи, из которых сложено мироздание. Однако уже слышны голоса физиков‑теоретиков, которые моделируют субкварковые составляющие нашего мира…

Это бесконечное деление напоминает частицу‑матрешку. И главный вопрос здесь: существует ли последняя матрешка, которую уже нельзя разнять… В самом деле, если последней матрешки нет, если процесс деления бесконечен, то мы никогда не узнаем, как устроен мир… С таким выводом нелегко согласиться. Но еще труднее свыкнуться с тем, что делимость вещества на каком‑то этапе должна прекратиться. Значит, дойдя до последней матрешки, мы исчерпаем все свойства мира?

Здравый смысл говорит нам: если мы разрежем яблоко пополам, то каждая половина будет в два раза меньше и легче целого плода. Сложим обе половины – и снова получим яблоко. И не может быть такого, чтобы каждая половинка весила больше целого яблока. В макромире действительно такого быть не может, а вот в мире элементарных частиц… Разнимая матрешки до все более мелких частиц, физики вдруг обнаружили нарушение закона сохранения массы. Оказалось, что масса целой частицы всегда… меньше суммы масс частиц, ее составляющих. Впрочем, физиков это совершенно не удивляет. Еще Эйнштейн показал, что масса и энергия эквивалентны. Значит, дефект масс, лежащий в основе тех же термоядерных превращений, восполняется выделением соответствующего количества энергии, и никаких нарушений законов сохранения, лежащих в основе физики, не происходит. Несложные подсчеты, основанные на соотношении Эйнштейна, показывают, что грамм кварков может высвободить громадную энергию, эквивалентную сжиганию двух с половиной тысяч тонн нефти!

Вернемся еще раз в далекую эпоху античных мыслителей‑метафизиков и вспомним удивительное суждение греческого философа Анаксагора, утверждавшего в пятом веке до нашей эры, что в каждой частице, какой бы малой она ни была, есть города, населенные людьми, обработанные поля и светит солнце, луна и другие звезды. Трудно согласиться с подобными утверждениями и вместить масштабы нашего макромира в ничтожно малый объем атомов или даже элементарных частиц. Даже невооруженным глазом можно различить на всем протяжении небесной сферы несколько тысяч звезд. Но это число начинает стремительно расти, если наше зрение усилить астрономическими трубами, оптическими телескопами, радиотелескопами. В одной нашей галактике Млечный Путь астрономы насчитывают примерно двести миллиардов звезд. А ведь галактик, подобных нашей, в обозримой части космоса, по утверждению астрофизиков, содержатся десятки миллиардов! Неудивительно, что сопоставить сверхбольшое и сверхмалое даже умозрительно очень трудно.

Замечательный русский поэт начала прошлого века Валерий Брюсов в стихотворении «Мир электрона» писал:

 

Быть может, эти электроны –

Миры, где пять материков,

Искусства, знанья, войны, троны

И память сорока веков!

 

 

Еще, быть может, каждый атом –

Вселенная, где сто планет;

Там – все, что здесь, в объеме сжатом,

Но также то, чего здесь нет…

 

Подобной игре воображения предавались и физики. Когда Нильс Бор в начале нашего века объяснял планетарную модель строения атома, ход его мысли был таков: электроны – планеты атомной системы – населены чрезвычайно малыми живыми существами, которые возводят свои домики, обрабатывают свою почву и изучают свою атомную физику. А на каком‑то этапе они обнаруживают, что и их атомы также являются маленькими планетными системами…

Эйнштейн показал, что геометрические свойства пространства реального мира существенным образом зависят от того, как распределена в нем материя. Другими словами, было установлено: окружающий нас мир, подобно изогнутому листу бумаги, обладает кривизной и эта кривизна связана с гравитационным полем, все определяет плотность вещества. Если она достаточно велика, то все метрические соотношения привычной для нас геометрии Евклида меняются неузнаваемым образом! И весь мир может стянуться в точку… Все это и послужило исходным материалом для гипотезы академика М. А. Маркова о том, что, возможно, вся наша Вселенная с мириадами галактик и биллионами звезд является микроскопической системой с размерами элементарной частицы!

В отличие от электронов поэта Брюсова фридмоны представляют собой вполне математически реальные объекты, и без каких‑либо дополнительных гипотез их можно получить как решения систем уравнений релятивистской гравитации… Но как же все‑таки Вселенная может сжаться до размеров атома? Академик Марков математически строго показал суть процессов, «свертывающих» в единое целое масштабы макро‑ и микромира, наглядно демонстрируя возможность своеобразного космологического подхода к теории элементарных частиц.

Поразительно, но гипотеза академика Маркова даже допускает опытную проверку. Для того чтобы наша Вселенная выглядела фридмоном – частицей с микроскопическими размерами и массой, необходимо, чтобы она имела некоторую строго определенную плотность материи, где‑то в пределах 10‑29 грамма в кубическом сантиметре. На данный момент данные о регистрируемой средней плотности несколько ниже – примерно 10‑30 грамма в кубическом сантиметре, но эта цифра лежит в пределах допустимой неточности. Разумеется, пока еще удивительные фридмоны являются лишь предвидением физика‑теоретика. Наука сейчас не может ответить, тождественны ли фридмоны каким‑то уже известным частицам, например протонам, или же это что‑то совершенно новое, что еще только предстоит открыть опытным путем. Но как бы там ни было, концепция фридмонов очень обогатила современную науку.

Вселенная фридмона

 

НАУЧНАЯ ДЕМОНОЛОГИЯ

 

Чтобы хоть как‑то представить себе необычный мир фридмонов, давайте совершим мысленное путешествие. Когда‑то великий английский физик восемнадцатого века Джеймс Кларк Максвелл ввел в обиход умозрительных физико‑теоретических построений воображаемое существо, впоследствии названное «демон Максвелла». Ему доступно все: наблюдать отдельные атомы, сортировать их, летать со сверхсветовыми скоростями… Представим, что этот демон, отправившись из центра нашей Вселенной – фридмона, начинает свое путешествие.

Демон встретит на своем долгом пути звезды, галактики, скопление галактик и скопление из скоплений… Но вот он приблизится к чудовищной воронке, соединяющей Вселенную фридмона с внешним миром. Пролетев через горловину наружу, максвелловский демон с удивлением обнаружил бы, что его родная Вселенная представляет теперь собой… всего лишь микроскопический объект. Так, может быть, стремясь в космические дали, мы поднимаемся вверх по лестнице, идущей вниз? Что, если бесконечность мира скорее похожа на круг, где сколь угодно малые величины в то же время являются бескрайне большими?

Если наша Вселенная представляет собой замкнутый мир, то взаимное притяжение всех находящихся в нем тел – звезд, межзвездного газа и пыли, галактик и их совокупностей – будет в точности равно энергии их общей массы. Другими словами, будет существовать полное равенство инертной и гравитационной энергии. Так, огромная Вселенная может оказаться почти в замкнутом, по Фридману, мире, а ее внешние размеры могут быть микроскопическими и даже нулем. Разумеется, так кажется внешнему наблюдателю: малая масса локализована внутри сферы микроскопически малого радиуса. Для наблюдателей же изнутри все выглядит совершенно по‑другому: внутри этой кажущейся малой сферы в принципе может помещаться целая Вселенная со всеми своими галактиками, звездами и скоплениями галактик. Возможность существования подобных объектов вытекает из общей теории относительности. Теория допускает существование неограниченного числа фридмонов, а если учесть, что последние астрономические данные говорят о том, что во Вселенной может существовать электрически нейтральная скрытая масса, то вполне возможно, что и мир, в котором мы живем, не что иное как фридмон.

Фридмон может проявить себя и как микроскопическая черная дыра. Правда, из такого толкования фридмонов следует, что говорить о наличии у них какого‑то внутреннего объема не имеет смысла, поскольку вся их материя, в процессе своего гравитационного коллапса, превращается в гравитационные волны. В действительности это не совсем так. Во‑первых, далеко не вся материя коллапсирующей звезды превращается в гравитационные волны; часть этой материи, и прежде всего элементарные частицы, может сохранять свою массу покоя. В процессе гравитационного коллапса эта часть вещества звезды увлекается гравитационными волнами в область виртуальной геометрии и уже из нее выбрасывается в другую вселенную (или в другую точку нашей Вселенной). Такую возможность вполне можно рассматривать как выбрасывание вещества звезды внутрь фридмонов этих вселенных. Утверждение академика Маркова о наличии у фридмонов конкретного внутреннего объема нельзя считать ошибочным еще и потому, что в качестве фридмонов можно рассматривать все вселенные многомерного времени. Собственно говоря, мы уже упоминали об этом выше, но тогда мы упоминали об этом в связи с абсолютным дефектом массы заключенной внутри фридмонов материи. Такая точка зрения автоматически исключает устойчивость фридмонов. Но структура фридмонов может быть и устойчивой, если в качестве таковой рассматривать структуру вселенных многомерного времени. Точнее, об этой структуре нельзя говорить, что она устойчива или неустойчива, поскольку друг от друга вселенные многомерного времени отделены областью виртуальной геометрии. Понятия устойчивости и неустойчивости основываются на наших обычных временных представлениях, которые неприменимы в области виртуальной геометрии.

Первое, что следует из такого толкования фридмонов Маркова, – это то, что в области виртуальной геометрии вселенные многомерного времени неотличимы от элементарных частиц. Хотя бы потому, что в этой области относительны их пространственные и временные размеры. А главное – потому, что в ней относительны свойства вселенных и элементарных частиц. Дело в том, что обособленность вселенных многомерного времени в этой области может быть не только полной, но и частичной, что позволяет наблюдать их во внутреннем пространстве какой‑то одной вселенной. Просто там, где эти вселенные связаны друг с другом, виртуальная геометрия частично утрачивает неопределенные метрические свойства, а значит, и допускает в какой‑то мере обычное наблюдение. Именно такие области физической реальности с частично нарушенной виртуальной геометрией и можно отождествить с горловинами Маркова, связывающими разные фридмоны.

Впрочем, фридмоны не обязательно должны заключать в себе только гигантские мироздания. Их содержимое может быть и более скромным: например, содержать в себе всего лишь одну галактику, звезду… А также несколько граммов или даже несколько сотых грамма вещества. Самое удивительное, что при всем этом все фридмоны внешне могут выглядеть совершенно одинаково. В таком случае, казалось бы, в природе должны встречаться частично замкнутые миры самых различных размеров, по крайней мере при наружном наблюдении. Ну а поскольку трудно представить себе, что огромная Вселенная имеет микроскопический электрический заряд, то фридмон, включающий в себя огромные миры, вроде бы должен иметь весьма малое распространение. Тут природа как бы проявляет симпатию к этому удивительному феномену. Согласно расчетам академика Маркова, почти замкнутая система с большим электрическим зарядом должна быть неустойчива. Чтобы обрести эту самую устойчивость, она стремится во что бы то ни стало выбросить из себя избыток электричества. Причем тот заряд, при котором система приобретет хотя бы хрупкое равновесие, должен быть как раз микроскопическим, близким к заряду, которым обладают многие элементарные частицы.

Таким образом, получается, что если пространство в какой‑то момент времени и обладало большим зарядом, то через некоторое время заряд этот неизбежно уменьшится. А значит, соответственно сократятся размеры и масса пространства, каковыми они предстают перед сторонним наблюдателем. То есть, говоря проще, согласно математическим выкладкам получается, что стягивание гигантских миров в точку вполне вероятно. Исходя из теории фридмонов получается, что мы должны свыкнуться с мыслью: любая элементарная частица в принципе может оказаться порталом в иные миры. Проникнув через этот вход, мы можем оказаться в совершенно иной вселенной. Нашему взору, возможно, предстали бы иные галактики, населенные, вполне возможно, своими цивилизациями. Если бы мы захотели вернуться назад, то пришлось бы снова проделать путь по коридору между мирами. Ну а окажись любопытство сильнее страха, то вполне возможно, мы могли бы отыскать другой фридмон, и тогда наше путешествие по иным мирам могло бы продолжаться до бесконечности.

Тут надо вспомнить, что одной из главных задач, стоящих перед современными физиками, является объединение в одной теории всех известных взаимодействий. Но, к сожалению, большинство современных попыток Великого объединения далеки от простоты и стройности. Если подход Евклида систематизировал и, в конечном счете, упрощал геометрию, то современные теории пространства‑времени часто только все запутывают и усложняют.

Как любил подчеркивать выдающийся физик прошлого столетия Р. Фейнман, главная причина в том, что мы пока не знаем всех законов природы, которые можно было бы свести в единую теорию.

Тут возникает законный вопрос: а есть ли вообще шансы хоть в очень далеком будущем, когда станут известны новые законы природы, создать математически стройную «теорию всего», из которой бы следовали все известные физические теории? Ответ на него совсем не очевиден, и его нельзя отдавать философам, которые могут все окончательно запутать. Большинство физиков скромно рассматривают свои любимые теории как не более чем модели реальности, не претендующие на полноту ее описания.

 

 

ГЛАВА ОДИННАДЦАТАЯ

ТАЙНА ВРЕМЕНИ

 

Я прекрасно знаю, что такое время, пока не думаю об этом. Но стоит задуматься – и вот я уже не знаю, что такое время.

Августин Блаженный, средневековый философ‑метафизик

 

…Каждый отрезок времени возникает сразу как целое, подобно кванту света, излучаемому атомом. Внутри такого «кванта времени» не имеют смысла понятия «раньше» и «позже». Из начальной космологической сингулярности время истекало не сплошным потоком, а как бы отдельными толчками. Космическое время – это время нашей Вселенной, оно возникло и существует вместе с ней…

А. Д. Чернин, «Физика времени»

 

АПОРИИ ЗЕНОНА

 

В предыдущих главах мы попытались обрисовать, как самым невероятным образом преображается течение процессов и само пространство за гранью сверхмалых масштабов реальной действительности. Теперь настала пора задаться вопросами об еще одном фундаментальном понятии нашего мира – времени. Квантовая механика полностью поменяла представление о поведении объектов микромира, а также свойствах самого пространства на сверхмалых уровнях. Несколько в стороне осталось только четвертое измерение континуума Минковского – время. Между тем именно время в микромире может быть ответственно за решение древних логических загадок – апорий эллинского философа, о которых мы уже рассказывали в первой главе.

Одними из первых предложили решение для апорий Зенона знаменитые древнегреческие мыслители Левкипп и Демокрит, создавшие и развившие античную школу атомистики. Они и их последователи считали, что апории Зенона просто не учитывают дискретную природу материи и времени, которые на определенном этапе всего лишь не допускают дальнейшего деления. Таким образом, древняя атомистика две с половиной тысячи лет назад предвосхитила не только современную атомную физику, но и новейшие теории о дискретном пространстве‑времени. Ну а теперь пришло время выполнить обещание, данное в начале нашей книги, и рассказать о том, каким удивительным образом идеи античного философа Зенона Элейского воплощаются в современном квантовом мире.

Рассмотрим систему радиоактивных атомов, подчиняющихся законам квантовой механики, и попробуем ответить на вопрос: будет ли изменяться вероятность распада нестабильного изотопа в зависимости от частоты проводимых нами измерений?

Но прежде напомним нашим читателем, что такое радиоактивность (от лат. radio – излучаю и activus – действенный). Это физическое явление состоит в спонтанном превращении неустойчивых изотопов химических элементов в результате радиоактивного распада. Радиоактивность была открыта в 1896 году известным французским экспериментатором Анри Беккерелем, который обнаружил проникающее излучение солей урана, действующее на фотоэмульсию. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Через два года Мария и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты новые радиоактивные элементы полоний и радий.

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом.

Янус двуликий

Божественный древнеримский пантеон включал два персонажа, ответственных за ход времени: Сатурна (греческий Хронос), пожирающего своих детей в неумолимом беге времени, и двуликого Януса – бога начала и конца, прошлого и будущего, молодости и старости. Образ последнего подходит и на роль современного символа проблемы физического времени с молодым лицом квантовой физики и старческим – классической науки.

 


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.