График интенсивности радиоактивного распада образца вещества в зависимости от времени — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

График интенсивности радиоактивного распада образца вещества в зависимости от времени

2020-02-15 153
График интенсивности радиоактивного распада образца вещества в зависимости от времени 0.00 из 5.00 0 оценок
Заказать работу

 

Картина времени

 

Также и времени нет самого по себе, но предметы

Сами ведут к ощущенью того, что в веках совершилось,

Что происходит теперь и что воспоследствует позже.

И неизбежно признать, что никем ощущаться не может

Время само по себе, вне движения тел и покоя.

 

Лукреций Кар, «О природе вещей»

 

СТРЕЛА ВРЕМЕНИ

 

Видный английский астрофизик Артур Эддингтон, известный своими поисками доказательств релятивистской природы окружающей нас действительности, в свое время высказал замечательное предположение, что направление течения времени связано с расширением Вселенной, назвав это явление «стрела времени». Он предполагал, что если наша Вселенная эволюционирует циклически и в определенный момент ее расширение сменится сжатием, то тут же изменит свое направление полета и стрела времени.

И хотя чаще всего парадоксы квантовой физики связаны с распространением обыденных макроскопических понятий пространства и времени на квантовые объекты, какой‑то аналог «стрелы времени» должен существовать и в микромире. Впрочем, микрочастицы вовсе не обязаны принадлежать только к знакомому нам частному случаю пространства‑времени (математики называют его гладким топологическим многообразием Минковского) в виде обычного евклидова пространства трех измерений из школьных учебников, дополненного координатной осью времени. Вполне возможно, что они «обитают» в своем специфическом микропространстве, в которое переходит многообразие Минковского на «планковских дистанциях», выражаемых в миллиметрах дробными числами с тридцатью нулями. В этой таинственной глубине могут происходить совершенно невероятные вещи, предсказываемые формальными математическими моделями, и далекие, даже астрономические расстояния «здесь» могут соответствовать неразличимой близости «там». Вот, кстати, и еще один вариант разгадки ЭПР‑парадокса, причем несравненно более «физичный», чем чудотворное квантовое сознание наблюдателей и «разумные потенциалы» микрочастиц, встречающиеся у отдельных современных исследователей.

Фантастика? Однако вспомним некоторые факты из жизни современной квантовой теории поля, описывающей элементарные частицы. Общепризнано (насколько подобное можно заявить сегодня), что в основе всех физических явлений лежат квантовые поля, дискретными составляющими которых выступают элементарные частицы. Эти частицы постоянно участвуют в сложных процессах взаимопревращения, возникновения и исчезновения. Для любопытствующих я весьма бы рекомендовал пару лучших книг по данной тематике: «Атомную физику» моего учителя Александра Ильича Ахиезера и «Физику элементарных частиц» Льва Борисовича Окуня, крупнейшего мирового авторитета в данной области. Удивительно, но пространственно‑временные представления, которые использует квантовая теория поля, по своей сути являются макроскопическим миром Минковского!

Мировая линия в континууме Минковского

Отныне понятия пространства самого по себе и времени самого по себе осуждены на отмирание и превращение в бледные тени, и только своего рода объединение этих двух понятий сохранит независимую реальность.

 

Герман Минковский

 

КОНТИНУУМ МИНКОВСКОГО

 

В свое время создание классической механики способствовало формированию такого идеала научного знания, согласно которому теория должна объяснять явления как четко причинно обусловленные, происходящие в пространстве и времени, на основе однозначных законов механики Галилея – Ньютона. Высшее развитие принцип классической предопределенности явлений, или детерминизма, получил в работах знаменитого французского физика и философа Пьера Симона Лапласа. Он писал: «Все явления – даже те, которые по своей незначительности как будто не зависят от великих законов природы, суть следствия столь же неизбежные этих законов, как обращения Солнца. Не зная уз, соединяющих их с системой мира в ее целом, их приписывают конечным причинам или случаю, в зависимости от того, происходили ли и следовали они одно за другим с известной правильностью, или же без видимого порядка, но эти мнимые причины отбрасывались по мере того, как расширялись границы нашего знания и совершенно исчезли перед здравой философией, которая видит в них лишь проявления неведения, истинная причина которого мы сами. Всякое имеющее место явление связано с предшествующими на основании того принципа, что какое‑либо явление не может возникнуть без производящей его причины». Детерминизм Лапласа предполагал однозначность и предопределенность будущего, это вытекает из признания жесткой причинно‑следственной связи между событиями и явлениями и отрицания объективной случайности.

Модель времени Лапласа была органично связана с представлениями об однозначной предопределенности физических явлений. Оказалось, что и теоретикам очень удобно оперировать понятиями четырехмерного пространства с тремя геометрическими координатами и одной временной.

В простейшем случае движение тела можно изобразить на плоскостной диаграмме, откладывая по одной координате значения времени, а по другой – пройденного пути. Если тело движется с некоторой скоростью, то через определенные интервалы времени после начала движения оно сместится от начала своего пути на соответствующую дистанцию. На диаграмме эти события отобразятся точками, через которые можно провести линию. Эта линия, образуемая из множества событий‑точек, в истории тела называется мировой линией.

В первой четверти координатной плоскости, где и время, и значения пути положительны, мировая линия ведет себя вполне логично. В какой‑то мере можно представить себе физически и движение вдоль мировой линии во второй четверти, где время положительно, а путь – отрицателен. В нашем обыденном мире это может означать возвращение в исходную точку. В этом смысле путь может показаться величиной отрицательной: двигаясь по нему, мы удаляемся от нужного нам пункта, вместо того чтобы приближаться к нему.

Но уж совсем необъяснимы с позиций обыденного мира случаи с отрицательным временем (нижняя полуплоскость на нашей диаграмме). Что это означает? Принципиальную возможность движения в прошлое? Но ведь время, насколько нам всем известно, не может течь вспять…

Мировая линия может изменять свое положение в пространстве в зависимости от того, с какой скоростью происходит движение. Если бы мы были способны двигаться мгновенно, то она могла бы попросту встать вертикально. Но физически это невозможно, самая большая скорость, физически достижимая на сегодняшний день, – это скорость света. Значит, мировая линия на нашем рисунке должна быть ограничена прямыми, показывающими распространение света, это будут так называемые «световые конусы».

Все это время мы рассматривали двухмерный случай, но наш мир, как уже говорилось, имеет четыре измерения. Значит, мировая линия может помещаться внутри некоторого светового конуса, очерченного мировыми линиями света. Особенно интересна поверхность конуса прошлого, лежащего в той области, где время отрицательно. Ведь на этой поверхности находится то, что мы можем увидеть. В самом деле: видеть – это, говоря иначе, воспринимать световые лучи. Но пока они донесут информацию от источника до нашего глаза, пройдет какое‑то время, значит, видеть мы можем только то, что уже произошло.

Следующие интереснейшие парадоксы физического времени можно встретить в микромире, рассматривая античастицы и обращение времени. Античастица – это частица‑двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от нее знаками некоторых характеристик взаимодействия (зарядов, таких, как электрический и цветовой заряд, барионное и лептонное квантовое число). Элементарная частица – собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами. Начиная с тридцатых годов прошлого века было уже открыто несколько сотен элементарных частиц.

Само определение того, что называть «частицей» в паре частица – античастица, в значительной мере условно. Однако окружающая нас природа состоит именно из «частиц», и соответствующие им античастицы определяются совершенно однозначно. Знаменитые физики‑теоретики двадцатого века Ричард Фейнман и Джон Уилер построили оригинальную модель античастиц как обычных частиц, живущих «вспять во времени». Парадоксально, но этого оказалось вполне достаточно для определения их свойств. Следуя идеям Фейнмана – Уилера, можно представить, что если античастица участвует в некотором процессе – скажем, испускания кванта электромагнитного поля, то его вероятность будет в точности равна вероятности обратного процесса поглощения точно такого же фотона обычной частицей.

Это, конечно, еще далеко не обратный поток времени, однако если существуют антимиры, то и макроскопические процессы в них будут происходить «обратным образом». Вообще же говоря, подобная операция обращения времени носит название темпоральной (временной) инверсии (Т‑инверсии, или обращения времени).

Таким образом, действие Т‑инверсии на состояние с определенным импульсом и энергией дает исходное состояние с начальными параметрами и координатами. Это объясняется тем, что после обращения времени следует пространственная инверсия (Р‑инверсия или пространственное обращение), изменяющая знаки у пространственных переменных и возвращающая микросистему в исходное состояние.

А вот как сам Р. Фейнман применял концепцию темпоральных инверсий ко вполне обычному процессу рассеяния электрона в веществе: «…Обычным способом такой процесс может быть описан следующим образом… В некоторый момент t < t(1) имеется только начальный электрон. В момент t(1) внешний потенциал рождает электрон‑позитронную пару. В момент t(2) > t(1) позитрон аннигилирует с начальным электроном, так что при t > t(2) остается только рассеянный электрон…»

Далее Фейнман продолжает анализировать рассеяние электрона и выдвигает новую версию рассеяния:

«…Вместо такого рассуждения мы хотим обобщить идею рассеяния и считать, что электрон рассеивается назад во времени от t(2) к t(1). Поэтому обычный позитрон проявляется как электрон, движущийся во времени вспять…»

В заключение Фейнман делает вывод: «…Эти два случая соответствуют частицам и античастицам…»

Приведенный отрывок из работы Фейнмана конца пятидесятых годов прошлого века со всей определенностью свидетельствует о том, что знаменитый физик считал античастицы частицами, движущимися из будущего в наше настоящее и дальше в прошлое. Уилер же, в развитие идей Фейнмана, считал, что подобная «антитемпоральная» природа античастиц позволяет успешно объяснить космологический парадокс видимого отсутствия антиматерии в доступных наблюдению частях Метагалактики.

В общей теории относительности, разработанной Эйнштейном, вблизи массивных тел пространство и время искривляются. Это явление известно нам как всемирное притяжение. Но вместе с искривлением пространства‑времени могут искривляться и все мировые линии, становясь замкнутыми. Двигаясь по таким замкнутым линиям, объект из будущего неминуемо встретится с самим собой в прошлом и сможет повлиять на уже прошедшие события.

 

ПЕТЛИ ВРЕМЕНИ

 

Существование в природе замкнутых мировых линий в свое время исследовал немецкий математик Курт Гедель. Замкнутые мировые линии, известные в научно‑популярной и фантастической литературе как «петли времени», появляются в окрестности массивных черных дыр. Так, из предыдущего параграфа мы знаем, что Кип Торн показал возможность образования петель времени в туннеле, соединяющем систему замороженных звезд. Другой английский космолог, Ричард Готт, развивая теорию суперструн (о которой мы уже много рассказывали), доказал, что прохождение таких струн сквозь друг друга должно порождать петли времени. Убедившись, что петли времени не противоречат теории относительности, физики попробовали избавиться от логических парадоксов путем ввода неизвестного нам закона природы, запрещающего вмешиваться в собственное прошлое.

Более радикальное объяснение невозможности парадоксов предложил Стивен Хокинг. Используя сочетание теории гравитации с квантовой механикой, описывающей движение элементарных частиц, он показал, что квантовые эффекты должны вызвать разрушение тех петель времени, которые предсказываются уравнениями Эйнштейна. Поэтому теория замкнутых мировых линий должна обязательно учитывать квантовые эффекты.

Мы уже рассказывали про кипение физического вакуума, именно на этом самом элементарном уровне пространства‑времени квантовая физика указывает на возможность возникновения петель времени. По квантовой теории пространство‑время здесь имеет «пенистую» структуру, включающую множество микроскопических замкнутых мировых линий. Впрочем, это не единственный космологический парадокс, ответы на который дает физика времени.

Подавляющая часть звезд и галактик находится от нас на расстоянии, с которого свет придет только через несколько миллиардов лет. За прошедшие десяток или больше миллиардов лет с момента вспышки первой звезды в нашей Вселенной их свет еще не успел достигнуть нашей планеты. Эти звезды находятся как бы за «берегом реки нашего времени». Те звезды, свет которых успел прийти в Солнечную систему, по расчетам астрономов, составляют лишь незначительную часть всех существующих звездных объектов. Именно поэтому яркость их света ничтожно мала и ночью на окраине нашей Галактики – Млечного Пути бывает темно. Так физика времени со своей точки зрения разрешила еще один знаменитый астрономический «парадокс Ольберса», названный так по имени сформулировавшего его немецкого астронома позапрошлого века.

Одной из самых интригующих проблем физики является поиск возможностей изменения направления полета «стрелы времени» или, в более широком смысле, приложение вектора хода времени в окружающих нас физических процессах. В начале двадцатых годов прошлого века, воодушевленный новыми теориями относительности и квантов, выдающийся отечественный геолог, геохимик и минералог Александр Евгеньевич Ферсман писал: «Поставить время в зависимость от скорости, от пространства, от движения тела, создать часы для его измерения в давно прошедшем прошлом, научиться считать его вне настоящего и овладевать его течением в будущем – разве все это не детские фантазии, недопустимые для ученого, естествоиспытателя и физика?»

Ответом на риторические вопросы академика Ферсмана может служить вся история развития современной теоретической и квантовой физики, наглядно показывающая, что известные законы, по‑видимому, не противоречат принципиальной возможности создания машины времени (Т‑агрегата), позволяющей путешествовать в прошлое и будущее. Существуют даже многовариантные схемы такой машины. При этом общим здесь является необходимость предварительного создания в общем‑то фантастических конструкций, сжимающих и скручивающих окружающее нас пространство. Подобные трудновообразимые «фокусы» с привычным нам окружением физики и математики называют «сложной топологией евклидового многообразия» или «изменением топологии трехмерного континуума». Интуитивно смысл этих загадочных фраз понятен, топология – это наука о самых общих геометрических свойствах пространств с различной размерностью, а многообразие и континуум – это все то же окружающее нас пространство.

Естественно, любая теория перемещения во времени пока еще является лишь «голой теорией» или чистой «научной спекуляцией». Чаще всего, когда речь заходит о зримом образе времени, школьные учителя и университетские профессора, следуя классической теории, рисуют на доске стрелку и говорят, что существует лишь одно временное измерение, составляющее единственное одномерное временное пространство.

В соответствии с этой точкой зрения, изменение событий прошлого автоматически меняет образ настоящего. При этом возникают любопытные парадоксы «временных петель». К примеру, что случится, если вы перенесетесь в прошлое и предотвратите встречу своих родителей? Популярный фантастический фильм «Назад в будущее» утверждает, что вы просто прекратите свое существование, навсегда исчезнув из реальности настоящего.

Сегодня считается установленным, что течение времени зависит от скорости перемещения тел, характера их движения и структуры окружающего пространства. На очереди построения реальных с точки зрения современной физики схем перемещения во времени. Какова же здесь может быть роль квантовой физики?

С помощью квантовой теории можно решить много трудных вопросов строения Т‑агрегатов. Можно сконструировать «вход» и «выход» машины времени, а также канал межвременного перехода, при этом можно радикально «развязать» все петли времени, применив многомировую интерпретацию квантовой механики. «Хрононавт», путешествуя во времени, никогда не сможет внести каких‑либо изменений в исходную реальность, поскольку он всегда будет находиться в иных мирах. При этом вообще можно представить занятную ситуацию, когда независимые миры выстраиваются во временную последовательность, где каждый из них в своем развитии абсолютно копирует ушедших в будущее соседей. Вот в таком Многомирье можно было бы путешествовать и в прошлое и в будущее, не опасаясь каких‑либо петель времени и наблюдая при этом неискаженную реальность истории собственного мира.

Мы уже рассказывали про кипение физического вакуума, именно на этом самом элементарном уровне пространства‑времени квантовая физика указывает на возможность возникновения петель времени. По квантовой теории пространство‑время здесь имеет «пенистую» структуру, включающую множество микроскопических замкнутых мировых линий.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.