Принципы соответствия и дополнительности — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Принципы соответствия и дополнительности

2020-02-15 236
Принципы соответствия и дополнительности 0.00 из 5.00 0 оценок
Заказать работу

 

Наконец‑то строение орбит в атоме получило четкое физическое обоснование, хотя и не очень‑то наглядное, ведь отобразить на бумаге электронные облака вероятности можно только символически. Именно так и изображается положение электронов в школьных и вузовских учебниках – там, где вероятность пребывания электронов велика, они выглядят как плотные клубы черного дыма, а там, где встретить их трудно, они переходят в прозрачную кисею. Такие изображения даже носят название дымных моделей, учитывающих и разную форму электронных облаков, вызванную межэлектронным взаимодействием.

В сложных атомах электроны буквально разрываются на части отталкиванием от своих многочисленных собратьев и притяжением к ядру, вот при этом и возникают довольно сложные взаимопроникающие конструкции, ажурное переплетение которых так отличается от кругов и эллипсов планетарной модели атома.

Сегодня уже каждый желающий может воочию наблюдать восхитительную динамику переливающихся условным разноцветьем электронных оболочек в компьютерных моделях атомов, молекул и просто фрагментов кристаллических решеток твердых тел.

История становления квантовой науки полна парадоксов и кажущихся несуразностей. Вот и после, казалось бы, полного краха планетарной модели атома Резерфорда – Бора в 1923 году появилась научная публикация, защищающая этот «реликт» атомной теории, и написал ее не кто иной, как творец вероятностной квантовой механики Нильс Бор!

Создатель копенгагенской школы физиков‑теоретиков в своей работе ввел новый научный принцип соответствия, сформулировав его в виде утверждения о том, что поведение квантово‑механической системы стремится к таковому по канонам классической физики в пределах больших квантовых чисел. Более пространно принцип соответствия можно истолковать как утверждение о том, что любая новая физическая теория должна в определенных пределах воспроизводить результаты предшествующей модели уже прошедшей (но на другом уровне) всестороннюю проверку.

Разумеется, весь аппарат квантовой физики создавался для описания микроскопических атомарных объектов и элементарных частиц. При этом, конечно же, никто из основателей этой новой научной парадигмы ни на мгновение не сомневался, что в макромире продолжают вполне успешно действовать законы классической механики и электродинамики. Бор считал, что было бы весьма разумно полагать, что объективные законы физики должны быть вообще независимыми от размера описываемых физических объектов.

Все это и послужило основанием для окончательной формулировки принципа соответствия в виде утверждения, что классическая физика является приближением к квантовой механике.

Следующий принцип, который должен был хоть в какой‑то мере объяснить странные отношения, которые сложились в квантовом мире между частицами и волнами, Бор очень точно и емко назвал принципом дополнительности. Надо сказать, что принцип дополнительности Бора до сих пор считается одной из самых глубоких философских и методологически емких идей современного естествознания. К примеру, выдающийся теоретик прошлого века Ричард Фейнман ставил данный принцип на одну доску с такими шедеврами абстрактного мышления, как принцип относительности или принцип полевого действия.

В работе, навсегда вошедшей в копилку шедевров естественно‑научной философии, – «Квантовый постулат и новейшее развитие атомной теории» Н. Бор рассуждал:

«Открытие универсального кванта действия привело к необходимости дальнейшего анализа проблемы наблюдения. Из этого открытия следует, что весь способ описания, характерный для классической физики (включая теорию относительности), остается применимым лишь до тех пор, пока все входящие в описание величины размерности действия велики по сравнению с квантом действия Планка. Если это условие не выполняется, как это имеет место в области явлений атомной физики, то вступают в силу закономерности особого рода, которые не могут быть включены в рамки причинного описания… Этот результат, первоначально казавшийся парадоксальным, находит, однако, свое объяснение в том, что в указанной области нельзя более провести четкую грань между самостоятельным поведением физического объекта и его взаимодействием с другими телами, используемыми в качестве измерительных приборов; такое взаимодействие с необходимостью возникает в процессе наблюдения и не может быть непосредственно учтено по самому смыслу понятия измерения…

Это обстоятельство фактически означает возникновение совершенно новой ситуации в физике в отношении анализа и синтеза опытных данных. Она заставляет нас заменить классический идеал причинности некоторым более общим принципом, называемым обычно „дополнительностью“».

Следуя дальнейшему течению мыслей этого выдающегося физика, мы должны принять, что получаемые нами с помощью различных измерительных приборов сведения о поведении исследуемых объектов, кажущиеся несовместимыми, в действительности не могут быть непосредственно связаны друг с другом обычным образом, а должны рассматриваться как дополняющие друг друга. Таким образом, в частности, объясняется безуспешность всякой попытки последовательно проанализировать «индивидуальность» отдельного атомного процесса, которую, казалось бы, символизирует квант действия, с помощью разделения такого процесса на отдельные части. Это связано с тем, что если мы хотим зафиксировать непосредственным наблюдением какой‑либо момент в ходе процесса, то нам необходимо для этого воспользоваться измерительным прибором, применение которого не может быть согласовано с закономерностями течения этого процесса. Между постулатом теории относительности и принципом дополнительности, при всем их различии, можно усмотреть определенную формальную аналогию.

Впоследствии, до самого конца жизни, Бор уделял много внимания развитию своего принципа дополнительности, справедливо считая, что для того, чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, необходимо прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно‑временным ходом какого‑либо физического процесса. Такой контроль в конечном счете всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно‑временную систему отсчета.

Мы лишь тогда можем говорить о самостоятельном, не зависящем от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным прибором, которое неизбежно возникает при установлении упомянутых связей.

Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно‑временными характеристиками события и всеобщими динамическими законами сохранения.

Точно так же и, наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль пространственно‑временного поведения объекта.

В дальнейшем Бор неоднократно отмечал, что координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. Действительно, для измерения импульса атомной частицы необходим чрезвычайно легкий подвижный «прибор». Для измерения координаты нужен очень массивный «прибор», который не шелохнулся бы при попадании в него частицы.

Ну а теперь предлагаю узнать мнение о квантовом мире одного из отцов‑основателей квантовой физики.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.