Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Топ:
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Техника безопасности при работе на пароконвектомате: К обслуживанию пароконвектомата допускаются лица, прошедшие технический минимум по эксплуатации оборудования...
Интересное:
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Дисциплины:
2017-05-16 | 1731 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
система требований, которые общество предъявляет к психическому развитию каждого из его членов; понятие введено К.М. Гуревичем
В психодиагностике существует и другой подход к оценке результатов диагностических испытаний. В нашей стране под руководством К. М. Гуревича [35] разрабатываются тесты, в которых в качестве точки отсчета выступает не статистическая норма, а независимый от результатов испытания, объективно заданный социально-психологический норматив.
Социально-психологический норматив реализуется в совокупности заданий, составляющих тест. Следовательно, сам тест в полном его объеме и является таким нормативом. Все сопоставления индивидуальных или групповых результатов тестирования проводятся с тем максимумом, который представляется в тесте (а это полный набор знаний). В качестве критерия оценки выступает показатель, отражающий степень близости результатов к нормативу. Имеется разработанная схема представления групповых количественных данных.
Для вычисления статистической нормы психологи-диагносты обратились к давно применяемым в биологии приемам математической статистики.
Рассмотрим пример.
На призывной пункт явилось несколько тысяч молодых людей.
Допустим, что все они примерно одного возраста. Что мы получим при измерении их роста? Обычно оказывается, что большинство почти одного роста, совсем немного будет людей очень маленького и очень высокого роста. Остальные же распределятся симметрично, уменьшаясь по количеству от среднего максимума в ту и другую сторону. Распределение рассматриваемых величин — это нормальное распределение (или распределение по нормальному закону, кривая распределения Гаусса). Математики показали, что для описания такого распределения достаточно знать два показателя — среднюю арифметическую и так называемое стандартное отклонение, которое получается путем несложных вычислений. Назовем среднюю арифметическую х, а стандартное отклонение σ (сигма малая). При нормальном распределении все изучаемые величины практически находятся в пределах х + 5 σ.
|
Рассмотрим как определялась статистическая норма для тестов Стэн-форд-Бине. В группу испытуемых входили 4498 человек от 2,5 до 18 лет. Усилия стэнфордских психологов были направлены на то, чтобы распределение полученных по каждому возрасту данных о выполнении
тестов было близко к нормальному. Этого результата удалось добиться далеко не сразу; в некоторых случаях ученым приходилось заменять одни задания другими. В конце концов эта работа была закончена, и были подготовлены тесты по каждому возрасту со средней арифметической, равной 100, и со стандартным отклонением, равным 16. Принимается, что результаты в пределах х ± σпоказывают границы наиболее характерной, представительной части распределения, границы нормы для данного возраста. При σ = 16 и х = 100 эти границы нормы будут от 84 до 116. Интерпретируется это так: результаты испытуемых, которые не выходят за эти границы, находятся в пределах нормы. Те, чьи результаты менее 84, находятся ниже нормы, а те, чьи результаты более 116, — выше нормы. Нередко этот же прием применяют и для дальнейшей классификации. Тогда результаты в пределах от х - σ до х - 2 σ интерпретируются как «несколько ниже нормы», а от х - 2 σ до х - З σ — как «значительно ниже нормы». Соответственно классифицируются результаты, находящиеся выше нормы.
Вернемся к результату, полученному ребенком шести лет, о котором упоминалось выше. Его успешность по тесту равна 117. Этот результат выше нормы, но очень незначительно (верхняя граница нормы 116).
Кроме статистической нормы, основой для сравнения, интерпретации результатов диагностических испытаний могут стать и такие показатели, как процентили.
|
Процентиль — это процентная доля индивидов из выборки стандартизации, первичный результат которых ниже данного первичного показателя.
Например, если 28 % людей правильно решат не более 15 задач в арифметическом тесте, то первичному показателю 15 соответствует 28-й процентиль (Р 28). Процентили указывают на относительное положение индивида в выборке стандартизации. Их также можно рассматривать, как ранговые градации, общее число которых равно 100, с той лишь разницей, что при ранжировании принято начинать отсчет сверху, т. е. с лучшего члена группы, получающего ранг 1. В случае же процентилей отсчет ведется снизу, поэтому чем ниже процентиль, тем хуже позиция индивида.
50-й процентиль (Р 50) соответствует медиане — одному из показателей центральной тенденции. Процентили свыше 50 представляют показатели выше среднего, а те, которые лежат ниже 50, — сравнительно низкие показатели. 25-й и 75-й процентили известны также под названием 1-го и 3-го квартилей, поскольку они выделяют нижнюю и верхнюю четверти распределения. Как и медиана, они удобны для описания распределения показателей и сравнения с другими распределениями [10, т. 1].
Процентили не следует смешивать с обычными процентными показателями. Последние являются первичными показателями и представляют собой процент правильно выполненных заданий, тогда как процентиль — это производный показатель, указывающий на долю от общего числа членов группы. Первичный результат, который ниже любого показателя, полученного в выборке стандартизации, имеет нулевой процентильный ранг (Р о). Результат, превышающий любой показатель в выборке стандартизации, получает процентильный ранг 100 (Р100). Эти процентили, однако, не означают нулевого или абсолютного результата выполнения теста.
Процентильные показатели обладают рядом достоинств, в частности:
♦ их легко рассчитать и понять даже сравнительно неподготовленному человеку;
♦ их применение достаточно универсально и подходит к любому типу тестов.
Однако недостаток процентилей - это существенное неравенство единиц отсчета в том случае, когда анализируются крайние точки распределения. При использовании процентилей (как уже отмечалось выше) определяется только относительное положение индивидуальной оценки, но не величина различий между отдельными показателями.
|
Вопрос 39
Для вычисления статистической нормы психологи-диагносты обратились к давно применяемым в биологии приемам математической статистики.
Рассмотрим пример.
На призывной пункт явилось несколько тысяч молодых людей.
Допустим, что все они примерно одного возраста. Что мы получим при измерении их роста? Обычно оказывается, что большинство почти одного роста, совсем немного будет людей очень маленького и очень высокого роста. Остальные же распределятся симметрично, уменьшаясь по количеству от среднего максимума в ту и другую сторону. Распределение рассматриваемых величин — это нормальное распределение (или распределение по нормальному закону, кривая распределения Гаусса). Математики показали, что для описания такого распределения достаточно знать два показателя — среднюю арифметическую и так называемое стандартное отклонение, которое получается путем несложных вычислений. Назовем среднюю арифметическую х, а стандартное отклонение σ (сигма малая). При нормальном распределении все изучаемые величины практически находятся в пределах х + 5 σ.
Рассмотрим как определялась статистическая норма для тестов Стэн-форд-Бине. В группу испытуемых входили 4498 человек от 2,5 до 18 лет. Усилия стэнфордских психологов были направлены на то, чтобы распределение полученных по каждому возрасту данных о выполнении
тестов было близко к нормальному. Этого результата удалось добиться далеко не сразу; в некоторых случаях ученым приходилось заменять одни задания другими. В конце концов эта работа была закончена, и были подготовлены тесты по каждому возрасту со средней арифметической, равной 100, и со стандартным отклонением, равным 16. Принимается, что результаты в пределах х ± σпоказывают границы наиболее характерной, представительной части распределения, границы нормы для данного возраста. При σ = 16 и х = 100 эти границы нормы будут от 84 до 116. Интерпретируется это так: результаты испытуемых, которые не выходят за эти границы, находятся в пределах нормы. Те, чьи результаты менее 84, находятся ниже нормы, а те, чьи результаты более 116, — выше нормы. Нередко этот же прием применяют и для дальнейшей классификации. Тогда результаты в пределах от х - σ до х - 2 σ интерпретируются как «несколько ниже нормы», а от х - 2 σ до х - З σ — как «значительно ниже нормы». Соответственно классифицируются результаты, находящиеся выше нормы.
|
Вернемся к результату, полученному ребенком шести лет, о котором упоминалось выше. Его успешность по тесту равна 117. Этот результат выше нормы, но очень незначительно (верхняя граница нормы 116).
Кроме статистической нормы, основой для сравнения, интерпретации результатов диагностических испытаний могут стать и такие показатели, как процентили.
Процентиль — это процентная доля индивидов из выборки стандартизации, первичный результат которых ниже данного первичного показателя.
Например, если 28 % людей правильно решат не более 15 задач в арифметическом тесте, то первичному показателю 15 соответствует 28-й процентиль (Р 28). Процентили указывают на относительное положение индивида в выборке стандартизации. Их также можно рассматривать, как ранговые градации, общее число которых равно 100, с той лишь разницей, что при ранжировании принято начинать отсчет сверху, т. е. с лучшего члена группы, получающего ранг 1. В случае же процентилей отсчет ведется снизу, поэтому чем ниже процентиль, тем хуже позиция индивида.
50-й процентиль (Р 50) соответствует медиане — одному из показателей центральной тенденции. Процентили свыше 50 представляют показатели выше среднего, а те, которые лежат ниже 50, — сравнительно низкие показатели. 25-й и 75-й процентили известны также под названием 1-го и 3-го квартилей, поскольку они выделяют нижнюю и верхнюю четверти распределения. Как и медиана, они удобны для описания распределения показателей и сравнения с другими распределениями [10, т. 1].
Процентили не следует смешивать с обычными процентными показателями. Последние являются первичными показателями и представляют собой процент правильно выполненных заданий, тогда как процентиль — это производный показатель, указывающий на долю от общего числа членов группы. Первичный результат, который ниже любого показателя, полученного в выборке стандартизации, имеет нулевой процентильный ранг (Р о). Результат, превышающий любой показатель в выборке стандартизации, получает процентильный ранг 100 (Р100). Эти процентили, однако, не означают нулевого или абсолютного результата выполнения теста.
Процентильные показатели обладают рядом достоинств, в частности:
♦ их легко рассчитать и понять даже сравнительно неподготовленному человеку;
♦ их применение достаточно универсально и подходит к любому типу тестов.
Однако недостаток процентилей - это существенное неравенство единиц отсчета в том случае, когда анализируются крайние точки распределения. При использовании процентилей (как уже отмечалось выше) определяется только относительное положение индивидуальной оценки, но не величина различий между отдельными показателями
|
|
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!