Фенолы. Общая характеристика. Методы получения и химические свойства. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Фенолы. Общая характеристика. Методы получения и химические свойства.

2018-01-14 537
Фенолы. Общая характеристика. Методы получения и химические свойства. 0.00 из 5.00 0 оценок
Заказать работу

Фенолами называются соединения, у которых гидроксильная группа непосредственно присоединена к ароматическому кольцу бензола. Соединения, содержащие гидроксильную группу у конденсированных ароматических соединений, называют нафтолами, антролами, фенантролами и т.д.

– для фенолов – СnHn-1 – OH или (Ar–OH)

 

 

Номенклатура фенолов. При наличии нескольких заместителей начало нумерации определяет гидроксильная группа и эти соединения рассматриваются как производные фенола.

Способы получения фенолов

А) Выделение из каменноугольной смолы. Замещение галогена на гидроксил.

Б) Окисление изопропилбензола (кумола) кислородом воздуха

 

Химические свойства фенолов

Химические свойства фенола обясняются взаимным влиянием гидроксогруппы и бензольного ядра, т.е. его хранением.

Строение гидроксильной группы фенола

Фенольная гидроксильная группа за счет р,p -сопряжения с кольцом является электродонором, поэтому вектор диполя в феноле направлен в сторону бензольного кольца, в то время как в спиртах – в сторону гидроксильной группы. Сопряжение группы ОН с ароматическим кольцом обусловливает дефицит электронной плотности на атоме кислорода, в результате чего протон гидроксильной группы фенолов становится более подвижным, чем в спиртах, а значит кислотные свойства увеличиваются.

А) Реакция со щелочными металлами и щелочами

Сходство со спиртами

2 С6Н5–ОН + 2 Na ® 2 С6Н5–ОNa + Н2­

Фенол фенолят натрия

В отличие от предельных спиртов

С6Н5–ОН + NaОН ® С6Н5–ОNa + Н2О

Галогенирование

Нитрование. Под действием 20%-ной азотной кислоты фенол легко превращается в смесь орто-, пара-нитрофенолов.

Под действием концентрированной азотной кислоты образуется пикриновая кислота.

Отдельные представители. Методы идентификации.

№22

Методы идентификации

Отдельные представители

№23

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин: метиламин СН3–NН2, диметиламин СН3–NН–СН3, триметиламин (СН3)3N, пропиламин СН3СН2СН2–NН2, фениламин С6Н5– NН2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:

 

Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH3 + CH3I ––® CH3– NH2 + NH4I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

2

С6Н52 ––® С6Н52 + Н2О

нитробензол кат анилин

В) Получение низших аминов (С1–С4) путем алкилирования спиртами:

3500C, Al2O3

R–OH + NH3 –––––––––––® R–NH2 +H2O

3500C, Al2O3

2R–OH + NH3 –––––––––––® R2 –NH +2H2O

3500C, Al2O3

3R–OH + NH3 –––––––––––® R3–N + 3H2O

Физические свойства аминов

Метиламин, диметиламин и триметиламин — газы, сред­ние члены ряда аминов — жидкости, высшие — твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:

 

Аналогично строению молекулы хлорида аммония можно представить и строение солей аминов:

 

Амины дают соли даже со слабой угольной кислотой:

 

Присоединение алкилгалогенидов к третичным аминам идет по той же схеме:

 

Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:

 

При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:

 

Третичные амины в эту реакцию не вступают.

Действие на амины азотистой кислоты. Эта реакция имеет важное аналитическое значение, так как позволяет раз­личать первичные, вторичные и третичные амины неаромати­ческого характера.

При действии азотистой кислоты на первичные амины (кроме ароматических аминов) выделяется свободный азот и образуется чаще всего спирт:

 

Вторичные амины с азотистой кислотой дают нитрозоамины — желтоватые жидкости, мало растворимые в воде:

 

При обработке крепкой соляной кислотой нитрозоамины снова дают исходные амины:

 

Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С02 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H2NCH2СН22. Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:

 

Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН2СН2СН2СН2СН2NH2 и пентаметилендиамин (1,5-пентандиамин) NН2СН2СН2СН2СН2СН22, или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.— труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН2СН2СН2СН2СН2СН2СН22 получено весьма ценное синтетическое волокно — найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты — соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО—СН2СН2—NH2, или коламин.

Этаноламин — густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:

 

Этаноламины широко применяются в технике в качестве эмульгаторов и других поверхностно-активных веществ, а так­же в различных процессах газоочистки, в том числе для извле­чения оксида углерода (IV) из топочных газов при производст­ве сухого льда (твердой двуокиси углерода).

Холин. Он представляет собой четырехзамещенное аммониевое основа­ние. В нем с атомом азота связаны три метильные и одна окси-этильная группа:

 

 

Холин входит в состав лецитинов — жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:

 

Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

№24

Альдегидами и кетонами называются соединения, содержащие в молекуле оксо– или карбонильную группу:

Отсюда другое их название – карбонильные соединения. В молекуле альдегидов атом углерода карбонильной группы связан с углеводородным радикалом и атомом водорода:

 

В молекуле кетонов атом углерода карбонильной группы связан с двумя углеводородными радикалами:

 

 

 

Классификация

В зависимости от характера углеводородных радикалов, входящих в молекулу альдегидов и кетонов различают: предельные, непредельные, ароматические и др. Кетоны могут быть смешанного типа: радикалы с которыми связана кетогруппа, могут принадлежать к разным классам. По количеству карбонильных групп различают монокарбонильные, дикарбонильные и поликарбонильные соединения.

 

Альдегиды Кетоны
Кетоны смешанного типа

 

Номенклатура. Изомерия.

Альдегиды часто называют по наименованию кислот, в которые они превращаются после окисления (уксусный альдегид). По рациональной (радикально-функциональной) при наименовании кетонов называют углеводородные радикалы и добавляют слово кетон (диметилкетон). По ИЮПАК в основе наименования альдегидов и кетонов лежит название углеводорода с тем же числом углеродных атомов, включая углеродный атом карбонильной группы. Для альдегидов добавляют окончание «-аль» (бутаналь), для кетонов – «-он» (пентанон). Нумерацию углеродной цепи начинают с того конца, к которому ближе расположен карбонильный углерод.

Изомерия альдегидов и кетонов определяется строением углеводородных радикалов.

Оксосоединения Изомеры

 


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.051 с.