Молекулярные вещества имеют низкие температуры плавления и кипения и находятся в стандартных условиях в твердом, жидком или газообразном состоянии. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Молекулярные вещества имеют низкие температуры плавления и кипения и находятся в стандартных условиях в твердом, жидком или газообразном состоянии.

2018-01-13 201
Молекулярные вещества имеют низкие температуры плавления и кипения и находятся в стандартных условиях в твердом, жидком или газообразном состоянии. 0.00 из 5.00 0 оценок
Заказать работу

Например: Вода - жидкость, t пл =0°С; t кип =100°С

Вода – самое известное и весьма распространенное вещество на нашей планете: поверхность Земли на 3/4 покрыта водой, человек на 65 % состоит из воды, без воды невозможна жизнь, так как в водном растворе протекают все клеточные процессы организма. Вода – молекулярное вещество. Это одно из немногих веществ, которое в природных условиях встречается в твердом, жидком и газообразном состояниях, и единственное вещество, для которого в каждом из этих состояний есть свое название.
Особенностями строения воды вызваны ее необычные свойства. Например, при замерзании вода увеличивается в объеме, поэтому лед плавает в своем расплаве – жидкой воде, а наибольшая плотность воды наблюдается при 4 oС, поэтому зимой большие водоемы до дна не промерзают. На свойствах воды основана и сама шкала температур Цельсия (0 o – температура замерзания, 100 o – температура кипения). С причинами этих явлений и с химическими свойствами воды вы познакомитесь позже.

Немолекулярные вещества - это вещества, мельчайшими структурными частицами которых являются атомы или ионы.

Ион - это атом или группа атомов, обладающих положительным или отрицательным зарядом.

Например: Na+, Cl-.

Немолекулярные вещества находятся в стандартных условиях в твердом агрегатном состоянии и имеют высокие температуры плавления и кипения.

Например: Поваренная соль - твердое вещество, t пл =801°С; t кип =1465°С; Железо

Железо – серебристо-белый, блестящий, ковкий металл. Это немолекулярное вещество. Среди металлов железо занимает второе место после алюминия по распространенности в природе и первое место по значению для человечества. вместе с другим металлом – никелем – оно образует ядро нашей планеты. Чистое железо не имеет широкого практического применения. Знаменитая Кутубская колонна, расположенная в окрестностях Дели, высотой около семи метров и весом 6,5 т, имеющая возраст почти 2800 лет (она поставлена в IX в. до н. э.) – один из немногих примеров использования чистого железа (99,72 %); возможно, что именно чистотой материала и объясняется долговечность и коррозионная устойчивость этого сооружения.

 

 

В виде чугуна, стали и других сплавов железо используется буквально во всех отраслях техники. Его ценные магнитные свойства используются в генераторах электрического тока и электромоторах. Железо является жизненно необходимым элементом для человека и животных, так как оно входит в состав гемоглобина крови. При его недостатке клетки тканей получают недостаточно кислорода, что ведет к очень тяжелым последствиям.

Слева направо по периоду у элементов происходит ослабление металлических свойств, и усиление неметаллических свойств, основные свойства оксидов ослабевают, а кислотные свойства оксидов возрастают.

По главным подгруппам неметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому: сверху вниз по главной подгруппе возрастают основанные свойства оксидов, а кислотные ослабевают.

 

59. Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.

Основные оксиды

1. Основный оксид + cильная кислота → соль + вода

2. Сильноосновный оксид + вода → щелочь

3. Сильноосновный оксид + кислотный оксид → соль

4. Основный оксид + водород → металл + вода

Примечание: металл менее активный, чем алюминий.

[править] Кислотные оксиды

1. Кислотный оксид + вода → кислота

Некоторые оксиды, например SiO2, с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид → соль

3. Кислотный оксид + основание → соль + вода

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

4. Нелетучий оксид + соль1 → соль2 + летучий оксид

5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

[править] Амфотерные оксиды

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

(в водном растворе)

(при сплавлении)

Слева направо по периоду у элементов происходит ослабление металлических свойств, и усиление неметаллических свойств, основные свойства оксидов ослабевают, а кислотные свойства оксидов возрастают.

По главным подгруппам неметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому: сверху вниз по главной подгруппе возрастают основанные свойства оксидов, а кислотные ослабевают.

Обратите внимание! Если один и тот же элемент образует несколько оксидов с разными степенями окисления, то чем выше степень окисления элемента в оксиде, тем выше его кислотные свойства.

Например: и – первый оксид основной, а второй амфотерный. , – первый оксид основной, второй – амфотерный, последний – кислотный.

60. Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химич Взаимодействие с основными оксидами с образованием соли и воды:

Взаимодействие с амфотерными оксидами с образованием соли и воды:

Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):

Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:

Взаимодействие с солями, если выпадает осадок или выделяется газ:

Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)

Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты любой концентрации и концентрированной серной кислоты ), если образующаяся соль растворима:

С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:

См. статью Взаимодействие кислот с металлами.

Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):

Например,

Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

В водных растворах основания диссоциируют, что изменяет ионное равновесие:

это изменение проявляется в цветах некоторых кислотно-основных индикаторов:

лакмус становится синим,

метилоранж — жёлтым,

фенолфталеин приобретает цвет фуксии.

При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Примечание: реакция не идёт, если и кислота и основание слабые.

При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:

Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:

Основания реагируют с кислотными или амфотерными оксидами с образованием солей:

Основания вступают в обменные реакции (реагируют с растворами солей):

Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:

Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.

Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.