Стали и сплавы с магнитными и электрическими свойствами — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Стали и сплавы с магнитными и электрическими свойствами



Стали и сплавы с магнитными свойствами. Магнитные стали и сплавы делятся на две группы: магнитотвердые и магнитомягкие.

Магнитотвердые стали и сплавы обладают высоким значением коэрцитивной силы Нс и остаточной индукции Вr. Они применяются для изготовления постоянных магнитов. Постоянные магниты небольших размеров делают из углеродистых заэвтектоидных сталей УЮ-У12.

Коэрцитивная сила углеродистых сталей резко возрастает после закалки на мартенсит вследствие появления больших напряжений.

У стали У12 после закалки в воде Нс = 4800 А/м, Вr = 0,8 Тл. Однако низкая прокаливаемость, малая стабильность остаточной ин­дукции привели к вытеснению углеродистых сталей легированными.

Легирование металла вызывает повышение магнитной твердо­сти (т.е. коэрцитивной силы). Коэрцитивная сила возрастает при образовании в твердом растворе второй фазы, с повышением дис­кретности второй фазы, при возникновении напряжений в крис­таллической решетке, при из­мельчении зерна.

В настоящее время для из­готовления постоянных маг­нитов широко используют стали, легированные хромом, вольфрамом, кобальтом или совместно несколькими эле­ментами (ЕХЗ, ЕХ7В6, ЕХ5К5). Буквой Е обозначает­ся магнитная сталь.

Для получения высоких магнитных свойств стали подвергают сложной термической обработке, состоящей из нормализации, за­калки в масле или в воде и низкотемпературного отпуска (при 100°С в течение 10-24 ч).

Высокое содержание углерода и легирующих элементов в этих сталях придает им повышенную твердость, поэтому перед холодной механической обработкой их подвергают смягчающему отжигу при 700—850 °С. При отжиге происходит образование карбидов, что ухуд­шает магнитные свойства («магнитная порча»). Поэтому перед за­калкой для устранения «магнитной порчи» проводят нормализацию, при которой происходит растворение крупных карбидных фаз.

Во избежание «магнитной порчи» при закалке нагрев должен быть кратковременным (не более 15 мин). Охлаждение можно про­водить в воде или в масле, но обычно охлаждают в масле, чтобы избежать коробления и образования трещин, хотя при этом не­сколько снижаются магнитные свойства.

Обработка холодом повышает магнитные свойства, так как ус­траняет немагнитный (парамагнитный) аустенит.

Отпуск несколько снижает коэрцитивную силу, но обеспечива­ет стабильность магнитных свойств в процессе эксплуатации.

Высокие магнитные свойства имеют железоникелькобальтовые сплавы, в частности магнит (8% А1, 24% Со, 14% Ni, 3% Си, остальное железо).



Магниты из этого сплава получают литьем, так как сплав не под­дается деформации и обработке резанием. Сплав подвергают закалке в магнитном поле. Сущность закалки в следующем. Нагретый до 1300°С сплав помещают между полюсами электромагнита напряженностью 160 А/м и охлаждают до температуры ниже 500°С, дальнейшее ох­лаждение проводят на воздухе. После такой обработки сплав облада­ет анизотропией магнитных свойств.

Магнитные свойства достигают высокого уровня в том направ­лении, в котором действовало внешнее магнитное поле при закал­ке. Затем сплав подвергают отпуску при 600 °С. Магнитные свой­ства: Я = 40 000 А/м, Вг = 1,2 Тл.

Последнее время находят применение сплавы на основе кобаль­та (52% Со, 14% V, остальное железо). Сплав поставляется в виде лент, полос и т.д.

Магнитомягкие сплавы и стали имеют низкую коэрцитивную силу и высокую магнитную проницаемость. Их применя­ют для изготовления сердечников, магнитных устройств, работаю­щих в переменных магнитных полях. Магнитомягкие материалы дол­жны иметь однородную (гомогенную) структуру, крупное зерно.

Незначительный наклеп сильно снижает магнитную проницае­мость и повышает коэрцитивную силу. Поэтому магнитомягкие сплавы для снятия напряжений и искажений структуры подверга­ют рекристаллизационному отжигу.

Широкое применение получило чистое железо, в котором со­держание углерода и всех примесей строго ограничено. Железо при­меняют для изготовления сердечников реле, электромагнитов постоянного тока, полюсов электрических машин и др.

Широкое применение в промышленности нашла электротех­ническая сталь — сплав железа с кремнием (0,05—0,005% С, 1,0— 1,8% Si). Легирование кремнием повышает электросопротивление стали и тем самым уменьшает потери на вихревые токи, повыша­ет магнитную проницаемость, снижает коэрцитивную силу и по­тери на гистерезис, способствует росту зерна, улучшает магнит­ные свойства за счет графитизирующего действия.



Маркируют электротехнические стали следующим образом: пер­вая цифра означает вид проката и структурное состояние (1 — го­рячекатаная, 2 — холоднокатаная изотропная, 3 — холоднокатаная анизотропная); вторая — содержание кремния: 0 — до 0,4%; 1 — 0,4- 0,8%; 2 - 0,8-1,8%; 3 - 1,8-2,8%; 4 - 2,8-3,8%; 5 - 3,8-4,8%; третья — основную нормируемую характеристику (0, 1 и 2 — удельные потери при различных значениях магнитной индукции и частоты, 6 и 7 — магнитная индукция соответственно в слабых и средних полях). Вместе первые три цифры обозначают тип стали; четвертая — порядковый номер типа стали. Чем он выше, тем меньше удельные потери, тем больше магнитная индукция.

Электротехническую сталь для снятия наклепа после прокатки и для укрупнения зерна подвергают отжигу при 1100-1200 °С в атмосфере водорода.

При рубке листов, резке, штамповке, гибке магнитные свойства ухудшаются. Для восстановления магнитных свойств электротехни­ческой стали рекомендуется отжиг при 750—800 °С в течение 2 ч с медленным (- 50 град/ч) охлаждением до 400 °С. При этом необхо­димо исключить окисление и науглероживание стали.

Электротехническую сталь изготавливают в виде листов толщи­ной от 1 до 0,05 мм.

Железоникелевые сплавы (от 40 до 80% Ni) — пермаллои — имеют высокую магнитную проницаемость, что очень важно для прибо­ров, работающих в слабых полях (радио, телефон, телеграф). Маг­нитные свойства пермаллоя сильно зависят от термической обра­ботки.

Для улучшения магнитных свойств после механической обра­ботки пермаллои подвергают отжигу при 1100—1200 "С в вакууме или атмосфере водорода. При этом укрупняется зерно, устраняют­ся остаточные напряжения и удаляются примеси углерода.

Охлаждение в магнитном поле также ведет к повышению маг­нитных свойств.

Немагнитные стали. В электромашиностроении и приборост­роении многие детали изготавливают из немагнитных сталей. Рань­ше для этой цели применяли цветные металлы, а теперь широко используют немагнитные аустенитные стали. Применение этих сталей резко снижает стоимость деталей, а также повышает ме­ханические свойства и уменьшает потери на вихревые токи в элек­троаппаратуре.

Применение марганцовистой аустенитной износоустойчивой стали (11ОГ13Л) в качестве немагнитной ограничивается ее пло­хой обрабатываемостью резанием, что обусловлено высокой склон­ностью ее к наклепу, а также нестабильностью прочностных свойств.

Широкое применение находят аустенитные коррозионно-стой­кие стали 12Х18Н9, 12Х18Н9Т. Желательно, чтобы содержание ни­келя в них соответствовало верхнему пределу, так как в противном случае при больших степенях холодной деформации возможно ча­стичное протекание γ→α - превращения, ведущего к появлению фер­рита, обладающего ферромагнитными свойствами.

Кроме того, применяются более дешевые стали 55Г9Н9ХЗ и 45Г17ЮЗ, в которых никель частично или полностью заменен мар­ганцем.

Стали и сплавы с электрическими свойствами. Элементы электросопротивления должны иметь низкую электропроводность или вы­сокое электросопротивление. Так как образование твердых раство­ров при легировании сопровождается повышением электросопро­тивления, то все сплавы высокого сопротивления, как правило, представляют собой твердые растворы.

Различают сплавы реостатные (для изготовления реостатов) и окалиностойкие сплавы высокого электросопротивления (для нагре­вательных элементов печей и электроприборов).

Сплавы высокого электросопротивления должны удовлетворять следующим требованиям:

иметь большое удельное электросопротивление;

иметь малый температурный коэффициент электросопротивле­ния (т.е. электросопротивление должно мало изменяться при изме­нении температуры);

обладать высокой окалиностойкостью, т.е. способностью проти­востоять образованию окалины при высоких температурах.

В качестве реостатных сплавов широкое применение нашли спла­вы меди с никелем — константан и никелин. Константан содер­жит 40% Ni, 1—2% Мn, остальное медь; никелин — 45% Ni, ос­тальное медь.

В качестве сплавов высокого электросопротивления применяют сплавы Ni — Сг (нихромы), Fe — Ni — Cr (ферронихромы) и Fe — Cr — А1 (фехраль) и др.

На свойства сплавов высокого электросопротивления вредное влияние оказывают такие примеси, как углерод, сера, фосфор и т.д. Примеси способствуют окислению границ зерен и тем самым уменьшают окаливаемость и повышают хрупкость.

В приборостроении часто требуются сплавы с определенным ко­эффициентом линейного расширения, например таким же, как у стекла, равным нулю. Для удовлетворения этих требований в каж­дом конкретном случае изготавливают сплавы строго определен­ного состава.

Износостойкие стали. Износ деталей в процессе эксплуатации может быть вызван двумя причинами: трением деталей друг о друга и царапанием твердых частиц о поверхность деталей (абразивный износ).

При обычном трении поверхность металла наклёпывается и со­противление износу возрастает. Следовательно, износостойкость определяется способностью металла к наклепу.

В случае абразивного износа, когда твердые частицы, абразивы, вырывают мельчайшие кусочки металла, стойкость против износа определяется сопротивлением металла отрыву и твердостью.

Для изготовления деталей, работающих на износ в условиях тре­ния и высоких давлений и ударов, применяют высокомарганцовис­тую аустенитную сталь 110Г13Л, содержащую 1,0-1,3% С и 11,5-14,5% Мn. Сталь применяют в литом и реже в горячедеформированном состоянии. Структура литой стали состоит из аустенита и избыточных карбидов (Fe, Mn)3C, выделяющихся по границам зе­рен и снижающих прочность и вязкость стали. Для повышения проч­ности и вязкости сталь подвергают закалке с температуры 1050— 1100°С в воде. При такой температуре карбиды растворяются, а быс­трое охлаждение в воде полностью задерживает их выделение. После закалки сталь имеет аустенитную структуру и обладает следующими механическими свойствами: σв= 800-900 МПа, σ0,2 = 310...350 МПа, δ=15 ... 25%, ψ= 20 ... 30%, 180 ... 220 НВ.

Высокая износостойкость стали 110Г13Л при трении с давлени­ем и ударами объясняется повышенной способностью к наклепу.

Если при эксплуатации наблюдается только абразивный износ без значительного давления и ударов, вызывающих наклеп, то сталь не обнаруживает повышенной износостойкости.

Таблица 8






Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.007 с.