Физические, химические и эксплуатационные — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Физические, химические и эксплуатационные



Физические, химические и эксплуатационные

Свойства материалов

Свойство - отличительная сторона предмета (материала), обуславливающая его отличие от других и проявляющаяся в их отношении к ним. В табл.1 обозначены основные свойства материалов, а в табл. 2 – свойства некоторых металлов.

Таблица 1

Основные свойства металлов

Физические Химические Механические Технологические
Цвет Блеск Плотность Температура плавления Электропроводность Теплопроводность Намагничиваемость и др. Коррозионная стойкость Окисляемость Жаростойкость Жаропрочность Растворимость Кислото-щелоче-упорность и др. Пластичность Упругость Вязкость Хрупкость Твердость Прочность и др. Обрабатываемость резанием Свариваемость Жидкотекучесть (литейные свойства) Обрабатываемость давлением (н-ер, ковкость) и др.

Таблица 2

Свойства некоторых металлов

Металл Плотность (кг/м3) T плав-ления Удельная теплоем-кость Теплопро-водность НВ Предел прочности при растяжении
Алюминий 20…37 8…11
Вольфрам 133,98
Железо 25…33
Кобальт
Магний 17…20
Медь
Никель 40…50
Олово 5…10 2…4
Свинец 4…6 1,8
Титан - 30…45
Хром -
Цинк 30…42 1,1…15

К физическим свойствамматериалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

Плотностью называется отношение массы однородного матери­ала к единице его объема. Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.



Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Химические свойствахарактеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

Рис. 3.Прибор Роквелла: 1 – вращающийся маховик; 2 – столик; 3 – стальной шарик или алмазный конус; 4 – циферблат; рукоятка

рис. 4.Методы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу.

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки,действую­щей на шарик, к площади поверхности полученного отпечатка.



Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы Аи С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000, 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной £ „ и диа­метром dQ. Образец растягивается под действием приложенной силы Р (рис. 5 ,а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию.

рис. 5. Образец для испытания на растяжение (а) и диаграмма растяжения (б)

рис. 6.Разрывная машина для испытания на растяжение (а) и диаграмма растяжения (б): 1 - коробка скоростей; 2 – электродвигатель; 3 – самозаписыващий прибор; 4 – рычаг; 5 – верхний захват; 6 – нижний захват (между 5 и 6 закрепляется образец); 7 – ходовой винт.

 

Напряжение σ— это отношение силы Р к площади поперечного сечения F, МПа:

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

где: — длина растянутого образца. Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1,6 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1,6). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести О02 — напряжение, вызывающее пластическую деформацию, равную 0,2%.

Предел прочности (или временное сопротивление) — это на­пряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.

Относительное удлинение после разрыва — отношение при­ращения длины образца при растяжении к начальной длине 0, %:

где к— длина образца после разрыва.

Относительным сужением после разрыва называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Ударная вязкость определяется работой А, затраченной на разрушение образца, отнесенной к площади его поперечного сече­ния F; Дж/м2:

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

рис. 7.Маятниковый копр для испытания на ударную вязкость: 1 – маятник; 2 – образец; 3 – шкала; 4 – стрелка

Таблица 2.1

Рис. 10. Схема электродуговой сварки: а – по методу Бенардоса: ток возникает между угольным электродом 2 и свариваемым изделием 3; 1 – присадочный материал; б – сварка по методу Славянова: дуга между металлическим электродом 2 в держателе 4 и изделием 3.

Рис.11. Схема изготовления литейной формы по разъ­емной модели:

Строение металлов

В технике под металлами понимают вещества, обладающие ком­плексов металлических свойств: характерным металлическим блес­ком, высокой электропроводностью, хорошей теплопроводностью, высокой пластичностью.

Кристаллические решетки.Все вещества в твердом состоянии могут иметь кристаллическое или аморфное строение. В аморфном веществе атомы расположены хаотично, а в кристаллическом — в строго определенном порядке. Все металлы в твердом состоянии имеют кристаллическое строение.

Для описания кристаллической структуры металлов пользуются понятием кристаллической решетки. Кристаллическая решетка — это воображаемая пространственная сетка, в узлах которой распо­ложены атомы. Наименьшая часть кристаллической решетки, опре­деляющая структуру металла, называется элементарной кристалли­ческой ячейкой.

рис. 12.Элементарные кристаллические ячейки: а – кубическая объемно-центрированная (ОЦК); б – кубическая гранецентрированная (ГЦК); в – гексагональная ячейка плотноупакованная.

На рис. 12 изображены элементарные ячейки для наиболее рас­пространенных кристаллических решеток. В кубической объемно-центрированной решетке (рис. 12,а) атомы расположены в узлах ячейки и один атом в центре куба. Такую решетку имеют хром, вольфрам, молибден и др. В кубической гранецентрированной решетке (рис. 12,6) атомы расположены в вершинах куба и в центре каждой грани. Эту решетку имеют алюминий, медь, никель и другие металлы. В гекса­гональной плотноупакованной решетке (рис. 12,в) атомы расположе­ны в вершинах и центрах оснований шестигранной призмы и три атома в середине призмы. Такой тип решетки имеют магний, цинк и некоторые другие металлы.

Кристаллизация металлов.Процесс образования в металлах кристаллической решетки называется кристаллизацией. Для изуче­ния процесса кристаллизации строят кривые охлаждения металлов, которые показывают изменение температуры (t) во времени (X). На рис. 3 приведены кривые охлаждения аморфного и кристаллическо­го веществ. Затвердевание аморфного вещества (рис. 13,а) происхо­дит постепенно, без резко выраженной границы между жидким и твердым состоянием. На кривой охлаждения кристаллического ве­щества (рис. 13,6) имеется горизонтальный участок с температурой t , называемой температурой кристаллизации. Наличие этого участ­ка говорит о том, что процесс сопровождается выделением скрытой теплоты кристаллизации. Длина горизонтального участка — это время кристаллизации.

рис. 13.Кривые охлаждения расплавов веществ: 1 – аморфного; 2 – кристаллического (теоретическая);

Кристаллизация металла происходит постепенно. Она объеди­няет два процесса, происходящих одновременно: возникновение цен­тров кристаллизации и рост кристаллов. В процессе кристаллиза­ции когда растущий кристалл окружен жидкостью, он имеет правильную геометрическую форму. При столкновении растущих кри­сталлов их правильная форма нарушается.

или

рис. 14.Последовательные этапы процесса кристаллизации металлов: а – образование зародышей или центров кристаллизации; б – д – появление новых центров кристаллизации и их быстрый рост; е – образование кристаллитов (зерен).

рис. 15. Схема определения температуры плавления металла: 1 – градуированная шкала; 2 – гальванометр; 3 – термопара; 4 – расплавленный металл; 5 – огнеупорный тигель.

После окончания кристаллизации образуются кристаллы неправиль­ной формы, которые называются зернами или кристаллитами. Внутри каждого зерна имеется определенная ориентация кристаллической ре­шетки, отличающаяся от ориентации решеток соседних зерен.

Полиморфизм.Некоторые металлы в зависимости от темпера­туры могут существовать в различных кристаллических формах. Это явление называется полиморфизм или аллотропия, а различные кри­сталлические формы одного вещества называются полиморфными модификациями. Процесс перехода от одной кристаллической фор­мы к другой называется полиморфным превращением. Полиморфные превращения протекают при определенной температуре.

Полиморфные модификации обозначают строчными гречески­ми буквами и т. д., причем соответствует модификации, существующей при наиболее низкой температуре. Полиморфизм ха­рактерен для железа, олова, кобальта, марганца, титана и некоторых других металлов.

Важное значение имеет полиморфизм железа. На рис. 16 изобра­жена кривая охлаждения железа. Полиморфные превращения ха­рактеризуются горизонтальными участками на кривой охлаждения, так как при них происходи! полная перекристаллизация металла. До 911QC устойчиво Fe, имеющее кубическую объемно-центрированную решетку. В интервале 911-1392°С существует Fe с кубической гранецентрированной кристаллической решеткой. При 1392-1539°С вновь устойчиво Fe. Часто высокотемпературную модификацию Fe обо­значают Fe8. Остановка на кривой охлаждения при 768°С связана не с полиморфным превращением, а с изменением магнитных свойств.До 768ООС железо магнитно, а выше — немагнитно.

рис. 16.График кристаллизации железа и его аллотропических превращений.

Дефекты кристаллического строения.Реальный металлический кристалл всегда имеет дефекты кристаллического строения. Они подразделяются на точечные, линейные и поверхностные.

Точечные дефекты малы во всех трех измерениях. К точечным дефектам относятся вакансии, представляющие собой узлы кристал­лической решетки в которых отсутствуют атомы (рис. 17), а также замещенные атомы примеси и внедренные атомы которые могут быть как примесными, так и атомами основно­го металла. Точечные дефекты вызывают местные искажения кри­сталлическойрешетки, которые затухают достаточно быстро по мере удаления от дефекта.

рис. 17. Дефекты кристаллической решетки: а – вакансия; б – межузельный атом; в – атом замещения; г – краевая дислокация.

Линейные дефекты имеют малые размеры в двух измерениях и большую протяженность в третьем. Эти дефекты называют дислока­циями. Краевая дислокация представляет собой искажение кристаллической решетки, вызванное наличием «лишней» атомной полуплоскости.

Поверхностные дефекты малы только в одном измерении. К ним относятся, например, границы между отдельными зернами или группами зерен.

Чугуны, их классификация.

 

Чугуном называют сплав железа с углеродом, содержащий от 2,14 до 6,67% углерода. Но это теоретическое определение. На практике содержание углерода в чугунах находится в пределах 2,5-4,5%. В качестве примесей чугун содержит Si, Mn, S и Р.

Классификация чугунов. Взависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В бе­лом чугуне весь углерод находится в связанном состоянии в виде це­ментита. Структура белого чугуна соответствует диаграмме Fe-Fe3C. В сером чугуне большая часть углерода находится в виде графита, вклю­чения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком — хлопь­евидную. Содержание углерода в виде цементита в сером, высоко­прочном и ковком чугунах может составлять не более 0,8%.

Белый чугун обладает высокой твердостью, хрупкостью и очень плохо обрабатывается. Поэтому для изготовления изделий он не ис­пользуется и применяется как передельный чугун, т.е. идет на произ­водство стали. Для деталей с высокой износостойкостью использу­ется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Машиностроительными чугунами, идущими на изго­товление деталей, являются серый, высокопрочный и ковкий чугу­ны. Детали из них изготовляются литьем, так как чугуны имеют очень хорошие литейные свойства. Благодаря графитным включени­ям эти чугуны хорошо обрабатываются, имеют высокую износостой­кость, гасят колебания и вибрации. Но графитные включения умень­шают прочность.

Таким образом, структура машиностроительных чугунов состо­ит из металлической основы и графитных включений. По металли­ческой основе они классифицируются на ферритный чугун (весь углерод содержится в виде графита), феррито-перлитный и перлит­ный (содержит 0,8% углерода в виде цементита). Характер ме­таллической основы влияет на механические свойства чугунов: проч­ность и твердость выше у перлитных, а пластичность — у ферритных.

Серый чугунимеет пластинчатые графитные включения. Струк­тура серого чугуна схематически изображена на рис. 31,а. Получают серый чугун путем первичной кристаллизации из жидкого сплава.

На графитизацию (процесс выделения графита) влияют скорость охлаждения и химический состав чугуна. При быстром охлаждении графитизации не происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, пер­литный, феррито-перлитный и ферритный серые чугуны. Способ­ствуют графитизации углерод и кремний. Кремния содержится в чу­гуне от 0,5 до 5%. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механичес­кие и литейные свойства. Фосфор не влияет на графитизацию, но улучшает литейные свойства.

Механические свойства серого чугуна зависят от количества и размера графитных включений. По сравнению с металлической ос­новой графит имеет низкую прочность. Поэтому графитные включе­ния можно считать нарушениями сплошности, ослабляющими ме­таллическую основу. Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наибо­лее низкие характеристики, как прочности, так и пластичности сре­ди всех машиностроительных чугунов. Уменьшение размера графит­ных включений улучшает механические свойства. Измельчению графитных включений способствует кремний.

 

рис. 31.Микроструктуры чугунов: а – серого, б – высокопрочного, в – ковкого

Маркируется серый чугун буквами СЧ и числом, показывающем предел прочности в десятых долях мегапаскаля. Так, чугун СЧ 35 имеет Ов=350 МПа. Имеются следующие марки серых чугунов: СЧ 10, СЧ 15, СЧ 20, ..., СЧ 45.

Высокопрочный чугун имеет шаровидные графитные включе­ния. Структура высокопрочного чугуна изображена на рис. 14,6. Получают высокопрочный чугун добавкой в жидкий чугун неболь­шого количества щелочных или щелочноземельных металлов, кото­рые округляют графитные включения в чугуне, что объясняется уве­личением поверхностного натяжения графита. Чаще всего для этой цели применяют магний в количестве 0,03-0,07%. По содержанию других элементов высокопрочный чугун не отличается от серого.

Шаровидные графитные включения в наименьшей степени ос­лабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т.д.

Маркируется высокопрочный чугун буквами ВЧ и цифрами, показывающими предел прочности в десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет σв = 600 МПа. Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ 50, ВЧ 60, ВЧ 70, ВЧ 80, ВЧ 100. Применяются высокопрочные чугуны для изготовления ответственных деталей — зубчатых колес, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения (рис. 14,в). Его получают из белого чугуна путем графитизирующего отжига, ко­торый заключается в длительной (до 2 суток) выдержке при темпера­туре 950-970°С. Если после этого чугун охладить, то получается ков­кий перлитный чугун, металлическая основа которого состоит из перлита и небольшого количества (до 20%) феррита. Такой чугун называют также светлосердечным. Если в области эвтектоидного пре­вращения (720-760°С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металли­ческая основа которого состоит из феррита и очень небольшого ко­личества перлита (до 10%). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами, пока­зывающими предел прочности в десятых долях мегапаскаля и от­носительное удлинение в %>. Так, чугун КЧ 45-7 имеет σв = 450 МПа и 8= 7%. Ферритные ковкие чугуны (КЧ 33-8, КЧ 37-12) имеют более высокую пластичность, а перлитные (КЧ 50-4, КЧ 60-3) более высокую прочность. Применяют ковкий чугун для деталей неболь­шого сечения, работающих при ударных и вибрационных нагрузках.

Итак, маркировки по ГОСТ некоторых чугунов:

Серый чугун СЧ 20 ГОСТ 1412-85

Высокопрочный чугун ВЧ ГОСТ 7293-85

Жаростойкий чугун ЧХ 22 ГОСТ 7769-82

Антифрикционный серый чугун АЧС-2 ГОСТ 1585-85

Антифрикционный высокопрочный АЧВ-1 ГОСТ 1585-85

Антифрикционный ковкий АЧК-2 ГОСТ 1585-85

 

Классификация сталей

По химическому составу стали могут быть углеродистыми, содержащими железо, углерод и примеси и легированными, содержащими дополнительно легирующие элемен­ты, введенные в сталь с целью изменения ее свойств.

По содержанию углерода стали делятся на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25 — 0,7% С) и высокоуглеродистые (более 0,7% С).

По назначению различают стали конструкционные, идущие на изготовление деталей машин, конструкций и сооружений, инстру­ментальные, идущие на изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавею­щие, жаростойкие, жаропрочные, износостойкие, с особыми элект­рическими и магнитными свойствами и др..

По показателям качества стали классифицируются на обыкно­венного качества, качественные, высококачественные и особо высо­кокачественные. Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим соста­вом, содержанием газов и вредных примесей (серы и фосфора). В соответствии с ГОСТом Стали обыкновенного качества должны со­держать не более 0,045% Р И 0,05% S, качественные — не более 0,035% и 0,01% S, высококачественные — не более 0,025% Р и 0,025% S и особовысококачественные не более 0,025% Р и 0,015% S. Углероди­стые конструкционные стали могут быть только обыкновенного ка­чества и качественными.

Таблица 4

Классификация сталей

По производству По химическому составу По назначению По качеству
Кислородно-конвертерная Мартеновская Электропечного переплава и др. Углеродистые (Fe+C) Легированные (Fe+C+легирующие компоненты) Конструкционные Инструментальные С особыми свойствами Обыкновенного качества Качественные Высококачественные Особо высококачественные

Таблица 5

Углеродистые стали

Таблица 6

Легированные стали

 

Легированной называют сталь, содержащую специально введенные внее с целью изменения строения и свойств легирующие элементы.

Легированные стали имеют целый ряд преимуществ перед углеро­дистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прокаливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и короб­ления деталей. С помощью легирования можно придать стали различ­ные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства).

Классификация сталей по различным признакам была рассмот­рена ранее. Отметим только, что стали обыкновен­ного качества могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Маркируются легированные стали с помощью цифр и букв, ука­зывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях про­цента. Далее показывается содержание легирующих элементов. Каж­дый элемент обозначается своей буквой: Н — никель, Г — марга­нец, Ц — цирконий, Т — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Р — бор, П — фосфор, Ф — ванадий, М — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного ле­гирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит при­близительно 0,12% углерода, 18% хрома, 10% никеля, менее 1% титана. Для некоторых групп статей применяют другую маркировку, которая будет указана при рассмотрении этих сталей.

Конструкционные стали

Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации. Поэтому основное требование к конструкционным сталям — комп­лекс высоких механических свойств.

Строительные сталисодержат малые количества углерода (0,1-0,3%). Это объясняется тем, что детали строительных конструкций обычно соединяются сваркой. Низкое содержание углерода обеспе­чивает хорошую свариваемость.

В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести σ0,2 = 240 МПа. В низколегирован­ных строительных сталях при содержании около 1,5% Мп и 0,7% Si предел текучести увеличивается до 360 МПа. К этим сталям относят­ся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими коли­чествами ванадия и ниобия (до 0,1%) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ.

Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газо­проводов.

Цементуемые сталисодержат 0,1-0,3% углерода. Они подверга­ются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 — 40. Упрочнение сердцевины в этих сталях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени уп­рочнения сердцевины цементуемые стали можно разделить на три группы.

К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-перлитную структуру. Эти стали имеют высокую износостойкость, но малую прочность (σв = 400-500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров.

К сталям со слабо упрочняемой сердцевиной относятся низколеги­рованные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (σв = 750-850 МПа).

К сталям с сильно упрочняемой сердцевиной относятся стали 20ХГР, 18ХГТ, 30ХГТ, 12ХНЗ, 18Х2Н4В и др. Сердцевина имеет мартенситную структуру. Стали этой группы имеют высокую проч­ность (σв = 1200-1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки.

Улучшаемые сталисодержат 0,3-0,5% углерода и небольшое количество легирующих элементов (до 3-5%). Эти стали подверга­ются улучшению, состоящему из закалки в масле и высокого отпуска.

После термообработки имеют структуру сорбита. Механические свой­ства разных марок улучшаемой стали в случае сквозной прокалива­емости близки (σв = 900-1200 МПа). Поэтому прокаливаемость оп­ределяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаемости улучшаемые стали могут быть условно разбиты на пять групп.

В первую группу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dкр = 10 мм. Эти стали под­вергаются нормализации вместо улучшения.

Ко второй группе относятся стали, легированные хромом ЗОХ, 40Х, Для них критический диаметр составляет Dкр= 15-20 мм.

Третью группу составляют хромистые стали, дополнительно ле­гированные еще одним двумя элементами (кроме никеля) 30ХМ, 40ХГ, 30ХГС и др. Для этих сталей Dкр = 20-30 мм.

Четвертая группа представлена хромоникелевыми сталями, со­держащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр Dкр = 40 мм.

В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3-4%: 38ХНЗ, 38ХНЗМФ (D = 100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги.

Высокопрочные стали.Новейшая техника предъявляет высо­кие требования к прочности стали (σв = 1500-2500 МПа). Этим тре­бованиям соответствуют мартенситностареющие стали, сочетаю­щие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03% С) сплавы железа с никелем (17-26% Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом. Широкое распространение получила сталь Н18К9М5Т. Она подвергается за­калке на воздухе с 800-850°С. Высокую прочность мартенситноста­реющие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450-50О°С. В резуль­тате такой термообработки сталь Н18К9М5Т имеет предел прочно­сти

σв = 2000 МПа.

Кроме упомянутой выше стали нашли применение стали Н12К8МЗГ2, Ml0X11М2Т, Н12К8М4Г2 и другие. Мартенситностаре­ющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими.

Пружинные стали. В пружинах и рессорах используются толь­ко упругие свойства стали. Возникновение пластической деформа­ции в них недопустимо, поэтому высоких требований к пластичнос­ти и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости а (см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5 0,7%) и применении термообработки, состоящей из закалки и среднею отпуска при температуре 350-450°С. После та­кой термообработки сталь имеет троститную структуру.

Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемости используются для пружин небольшого сечения. Они могут работать при температуре до 100° С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для боль­ших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высокока­чественные стали легированные хромом и ванадием (50ХФА, 50ХГФА). Эти стали могут работать при температуре до 300° С. Из них изготавливают, например, рессоры легковых автомобилей.

Износостойкие стали способны сопротивляться процессу изна­шивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы.

В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют струк­туру мартенсита или мартенсита с карбидными включениями. К этой ipynne относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения. Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1%.

Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (-1,5%) и кремния (~1%), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел 3.3.).

Третью группу составляют стали износостойкость которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100°С в воде, после чет получает аустенитную структуру. Плохо обрабаты­вается резанием, поэтому применяется влитом состоянии.

Инструментальные стали.

По назначению инструментальные стали делятся на стали для ре­жущего, измерительного и штампового инструмента. Кроме сталей, для изготовления режущего инструмента применяются металлокерамические твердые сплавы и минералокерамические материалы. Режу­щий инструмент работает в сложных условиях, подвержен интенсив­ному износу, при работе часто разогревается. Поэтому материал для изготовл






Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.029 с.