Приведение произвольной системы сил к силе и паре сил ( основная теорема статики). Теорема Пуансо. — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Приведение произвольной системы сил к силе и паре сил ( основная теорема статики). Теорема Пуансо.

2018-01-03 513
Приведение произвольной системы сил к силе и паре сил ( основная теорема статики). Теорема Пуансо. 0.00 из 5.00 0 оценок
Заказать работу

Пусть дана произвольная система сил (F1, F2,..., Fn). Сумма этих сил F=åFk - главный вектор системы сил. Сумма моментов сил относительно какого-либо полюса - главный момент рассматриваемой системы сил относительно этого полюса. Осн теор статики (теорема Пуансо): Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, прило­женной в какой-либо точке тела (центре приведения) и равной глав­ному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения.

Пусть О — центр приведения, принимаемый за начало коорди­нат, r1,r2, r3,…, rn–соответствующие радиусы-векторы точек приложения сил F1, F2, F3,...,Fn, составляющих данную систему сил (рис. 4.2, а). Перенесем силы F1, Fa, F3,..., Fn в точку О. Сложим эти силы как сходящиеся; получим одну силу: Fо=F1+F2+…+Fn=åFk, которая равна главному вектору (рис. 4.2, б). При последователь­ном переносе сил F1, F2,..., Fn в точку О получаем каждый раз соответствующую пару сил (F1, F”1), (F2,F”2),...,(Fn, F"n).Моменты этих пар соответственно равны моментам данных сил относительно точки О: М1=М(F1,F”1)=r1 x F1о(F1), М2=М(F2, F”2)=r2 x F2о(F2), …, Мп=М(Fn, F"n)=rn x Fnо(Fn). На основании правила приведения системы пар к простейшему виду все указанные пары можно заменить одной парой. Ее момент равен сумме моментов всех сил системы относительно точки О, т. е. равен главному моменту, М012+...+Мnо(F1)+Мо(F2)+…+ Мо(Fn)==åМо(Fk)=årk x Fk. Систему сил, как угодно расположенных в пространстве, можно в произвольно выбранном центре приведения заменить силой Fo=åFk и парой сил с моментом M0=åM0(Fk)=årk x Fk.

 

24. Формулы для определения главного вектора и главного момента в декартовой системе координат.

Выбираем систему координатных осей Oxyz и вычисляем проекции главного вектора как алгебраические суммы проекций всех заданных сил на выбранные оси:

По найденным проекциям, откладывая соответствующие отрезки вдоль координатных осей (с учетом знака проекции), строим прямоугольный параллелепипед. Направленная диагональ, проведенная из начала координат в противоположную вершину параллелепипеда, определяет главный вектор R. Модуль и направляющие косинусы главного вектора определяются следующими вытекающими из построения формулами: Совершенно аналогично определяются проекции, модуль и направляющие косинусы главного момента:

Главный момент, по определению, есть векторная сумма моментов всех сил центра О. Следовательно, его проекции на координатные оси равны алгебраическим суммам проекций на эти оси векторов-моментов сил относительно центра О, то есть величин Но эти величины, по определению момента силы относительно оси, являются моментами сил относительно соответствующих координатных осей:

Косинус угла между главным вектором и главным моментом определяется так: Отсюда:

 

25. Зависимость главного момента от выбора центра приведения. При переходе от одного центра приведения к другому изменяется момент произвольной силы F i, выражения для моментов силы относительно каждого из центров:

1. Между собой точки приведения A и B связаны радиус-вектором d:

2. Радиус-вектор r Bi в выражение для момента силы MB (Fi):

3. Просуммируем моменты всех сил M B (F i):

 

4. Получили зависимость главного момента сил от выбора центра приведения:

 

главный минимальный момент выражается через скалярное произведение:

 

Главный минимальный момент может быть вычислен как проекция главного момента в любой точке приведения на центральную ось:

 

 

26. Инварианты статики.

Инварианты системы сил – величины, не зависящие от выбора центра приведения:

Первый (векторный) инвариантглавный вектор системы сил R *:

 

Главный момент не является инвариантом, поскольку он зависит от выбора центра приведения. Однако существует величина, связанная с главным вектором, не зависящая от выбора центра приведения:

1. Запишем зависимость для главного момента системы от выбора точки приведения:

2. Умножим левую и правую части этого выражения скалярно на главный вектор и раскроем скобки:

3. Второе слагаемое в правой части обращается в ноль, т.к. главный вектор R* перпендикулярен вектору векторного произведения в скобках. Отсюда получаем тождество: Таким образом, скалярное произведение главного вектора R* на вектор главного момента MA есть второй (скалярный) инвариант: Отсюда, главный минимальный момент M* также является инвариантной величиной

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.