Условия (156.1) в (156.2) сводятся к тому, что — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Условия (156.1) в (156.2) сводятся к тому, что

2018-01-03 157
Условия (156.1) в (156.2) сводятся к тому, что 0.00 из 5.00 0 оценок
Заказать работу

(156.3)

Выражение (156.3) представляет собой уравнение гиперболы с фокусами в точках S 1 и S 2. Следовательно, геометрическое место точек, в которых наблюдается усиление или ослабление результирующего колебания, представляет собой семейство гипербол (рис. 221), отвечающих условию (j 1j 2)=0. Между двумя интерференционными мак­симумами (на рис. 221 сплошные линии) находятся интерференционные минимумы (на рис. 221 штриховые линии).

 

Вопрос 19 Стоячие волны

Особым случаем интерференции являются стоячее волны — это волны, образующиеся при наложении двух бегущих воли, распространяющихся навстречу друг другу с оди­наковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией.

Для вывода уравнения стоячей волны предположим, что две плоские волны рас­пространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид (157.1)

Сложив эти уравнения и учитывая, что k=2v/X (см. (154.3)), получим уравнение стоячей волны: (157.2)

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой A ст =| 2 А cos(2 pх/l)|, зависящей от координаты х рассматриваемой точки.

В точках среды, где (157.3)

амплитуда колебаний достигает максимального значения, равного 2 А. В точках среды, где (157.4)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (А ст = 2 А), называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (A ст=0), называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов (157.5) (157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны l /2. Расстояние между сосед­ними пучностью и узлом стоячей волны равно l /4.

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (157.2) стоячей волны аргумент косинуса не зависит от х). При переходе через узел множитель 2 A cos(2 px/l) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на p, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае возникает узел. Будет ли на границе отражения узел или пучность, зависит от соот­ношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 222, а), если более плот­ная — узел (рис. 222, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у гра­ницы колебания складываются с одинаковыми фазами — образуется пучность.

Если рассматривать бегущую волну, то в направлении ее распространения перено­сится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превра­щения кинетической энергии в потенциальную и обратно.

Вопрос 24 Излучение диполя.

Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону

где р 0 — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда + Q и отрицательного заряда –Q, гармонически колеблющегося вдоль направления р с частотой w.

Задача об излучении диполя имеет в теории излучающих систем важное значение, так как всякую реальную излучающую систему (например, антенну) можно рассчиты­вать рассматривая излучение диполя. Кроме того, многие вопросы взаимодействия излучения с веществом можно объяснить на основе классической теории, рассматривая атомы как системы зарядов, в которых электроны совершают гармонические колеба­ния около их положений равновесия.

Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r >> l), — так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r < l.

Если волна распространяется в однородной изотропной среде, то время прохожде­ния волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим и, следовательно, волна, излуча­емая диполем, есть сферическая волна.

В каждой точке векторы Е и Н колеблются по закону cos(wt—kr), амплитуды этих векторов пропорциональны (1/ r) sin q (для вакуума), т. е. зависят от расстояния r до излучателя и угла q между направлением радиуса-вектора и осью диполя. Отсюда следует, что интенсивность излучения диполя в волновой зоне (164.1)

Зависимость (164.1) I от q при заданном значении r, приводимая в полярных коор­динатах (рис. 228), называется диаграммой направленности излучения диполя.

 

 

Вопрос 1 Гармонические колебания и их характеристики
Вопрос 2 Механические гармонические колебания
Вопрос 3 Физический маятник
Вопрос 4 Свободные гармонические колебания в колебательном контуре
Вопрос 5 Сложение гармонических колебаний одного направления и одинаковой частоты.
Вопрос 6 Сложение взаимно перпендикулярных колебаний
Вопрос 7 Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение.
Вопрос 9 Свободные затухающие колебания пружинного маятника. Для пружинного маят­ника
Вопрос 10 Свободные затухающие колебания в электрическом колебательном контуре.
Вопрос 11 Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
Вопрос 12 Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
Вопрос 13 Волновые процессы. Продольные и поперечные волны
Вопрос 14 Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
Вопрос 15 Волновым уравнением
Вопрос 17 Принцип суперпозиции. Групповая скорость
Вопрос 18 Интерференция волн
Вопрос 19 Стоячие волны
Вопрос 24 Излучение диполя.

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.