Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Топ:
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов...
Интересное:
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Пример 6. Установить, при каких значениях переменных не имеет смысла дробь
.
Решение.
. Мы получили равенство двух переменных, приведем числовые примеры:
или
и т. д.
Изобразим это решение на графике в декартовой системе координат:

Рис. 3.
График функции
.
Координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.
Ответ.
.
5. Случай типа "деление на ноль"
В рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. Теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа
.
Пример 7. Установить, при каких значениях переменных не имеет смысла дробь
.
Решение.
.
Получается, что дробь не имеет смысла при
. Но можно возразить, что это не так, потому что:
.
Может показаться, что если конечное выражение равно 8 при
, то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при
. Однако, если подставить
в исходное выражение, то получим
– не имеет смысла.
Ответ.
.
Чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях
указанная дробь равна нулю?
(дробь равна нулю, когда ее числитель равен нулю)
. Но необходимо решить исходное уравнение с дробью, а она не имеет смысла при
, т. к. при этом значении переменной знаменатель равен нулю. Значит, данное уравнение имеет только один корень
.
Правило нахождения ОДЗ
Таким образом, можем сформулировать точное правило нахождения области допустимых значений дроби: для нахождения ОДЗ дроби необходимо и достаточно приравнять ее знаменатель к нулю и найти корни полученного уравнения.
Мы рассмотрели две основные задачи: вычисление значения дроби при указанных значениях переменных и нахождение области допустимых значений дроби.
Рассмотрим теперь еще несколько задач, которые могут возникнуть при работе с дробями.
Разные задачи и выводы
Пример 8. Докажите, что при любых значениях переменной дробь
.
Доказательство. Числитель – число положительное.
. В итоге, и числитель, и знаменатель – положительные числа, следовательно, и дробь является положительным числом.
Доказано.
Пример 9. Известно, что
, найти
.
Решение. Поделим дробь почленно
. Сокращать на
мы имеем право, с учетом того, что
является недопустимым значением переменной для данной дроби.
Ответ.
.
На данном уроке мы рассмотрели основные понятия, связанные с дробями. На следующем уроке мы рассмотрим основное свойство дроби.
Домашнее задание
1. Запишите рациональную дробь, областью определения которой является: а) множество
, б) множество
, в) вся числовая ось.
2. Докажите, что при всех допустимых значениях переменной
значение дроби
неотрицательно.
3. Найдите область определения выражения
. Указание: рассмотреть отдельно два случая: когда знаменатель нижней дроби равен нулю и когда знаменатель исходной дроби равен нулю.
Урок 8: Основное свойство алгебраической дроби.
На данном уроке будет рассмотрено основное свойство алгебраической дроби. Умение правильно и без ошибок применять это свойство является одним из важнейших базовых умений во всем курсе школьной математики и будет встречаться не только на протяжении изучения данной темы, но и практически во всех изучаемых в дальнейшем разделах математики. Ранее уже было изучено сокращение обыкновенных дробей, а на данном уроке будет рассмотрено сокращение рациональных дробей. Несмотря на довольно большое внешнее отличие, существующее между рациональными и обыкновенными дробями, у них очень много общего, а именно – и обыкновенным, и рациональным дробям присущи одинаковое основное свойство и общие правила выполнения арифметических действий. В рамках урока мы столкнемся с понятиями: сокращение дроби, умножение и деление числителя и знаменателя на одно и то же выражение – и рассмотрим примеры.
|
|
|
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
© cyberpedia.su 2017-2026 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!