Конструкция дисков турбин ТНА — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Конструкция дисков турбин ТНА

2017-11-18 469
Конструкция дисков турбин ТНА 0.00 из 5.00 0 оценок
Заказать работу

Особенно высокие требования по точности обработки предъявляются к сопрягаемым размерам — посадочному отверстию в ступице или посадочным пояскам и к пазам для крепления лопаток. Посадочные пояски и отверстия в ступице обычно выполняются по 2-му классу точности. Допуски на размеры паза для крепления лопаток— 0,01—0,03 мм. Допускаемое биение наружных поверхностей посадочных мест — 0,03—0,06 мм.

Передача крутящего момента от диска к валу осуществляется болтами или штифтами, вставляемыми в отверстия Г (см. рис.77,а) или шлицами Е (см. рис.77, б). Иногда вал вытачивается заодно с фланцем, а диск турбины приваривается к фланцу вала, как это изображено на рис.77, в. При такой конструкции диска достигается экономия дорогостоящих жаропрочных сплавов, так как вал изготовляется из более дешевых сталей.

При конструировании дисков турбин очень большое внимание уделяется рациональному способу крепления лопаток с учетом конструктивной прочности и технологичности конструкции.

Наибольшая конструктивная прочность при минимальном весе диска достигается в том случае, когда лопатки выполнены за одно целое с диском. У таких дисков обод получается наиболее легким. Однако технология их изготовления сложна и сопряженна с большой затратой труда. Кроме того, качество обработки профиля лопаток выше, если лопатки изготовляются отдельно от ротора. Повышенная шероховатость или несоответствие профиля лопатки расчетному снижает коэффициент полезного действия турбины. Все эти факторы подробно анализируются и в каждой конкретной конструкции ТНА находится наиболее рациональное решение.

Несмотря на кажущиеся выгоды получения заготовок дисков турбин за одно целое с лопатками в реальных условиях иногда целесообразнее изготовлять лопатки отдельно с последующим соединением их с диском с помощью замков или сваркой.

Лопатка газовой турбины состоит из двух основных конструктивных элементов — пера и корневой части с замком. Перо—рабочий элемент лопатки, а корневая часть, или замок, служит для соединения пера с диском турбины. Перо лопатки имеет сложную форму, определяемую газодинамическим расчетом. Вогнутую сторону пера называют корытом, а выпуклую – спинкой. Профили корыта и спинки соединяются, образуя кромки пера: переднюю, или входную, кромку со стороны входа газа на лопатку и заднюю, или выходную, кромку. На практике широкое распространение получили три характерных типа лопаток газовых турбин ТНА:

- лопатка, изготовленная отдельно и соединяемая с диском турбины сваркой или замком;

- лопатки открытого типа, выполненные за одно целое с диском турбины;

- лопатки, выполненные за одно целое с диском турбины, соединенные сверху бандажным кольцом.

У каждого из этих типов лопаток свои достоинства и недостатки как эксплуатационного, так и технологического характера.

Лопатки первого типа изготовляются отдельно от диска и могут быть выполнены более точно и с лучшей чистотой поверхности, чем лопатки остальных типов.

На каждую турбину идет большое количество лопаток, что позволяет даже при мелкосерийном производстве ТНА организовать поточное изготовление лопаток с применением специального оборудования и высокопроизводительной оснастки. Однако необходимость крепления отдельно выполненных лопаток к диску с помощью замков усложняет технологический процесс и утяжеляет диск турбины. Этот недостаток в значительной мере устраняется при соединении лопаток с диском сваркой.

Лопатки второго типа наиболее рациональны конструктивно, так как не требуют крепления. Однако такие лопатки нельзя изготовить обычной механической обработкой. Для выбирания металла между лопатками приходится применять электроэрозионный, ультразвуковой или другие методы, по производительности значительно уступающие обычной механической обработке. Кроме того, изготовление такого типа лопаток требует весьма точного соблюдения технологического процесса, так как наличие одной забракованной лопатки ведет к браку всего диска турбины. Лопатки второго и третьего типа не могут быть выполнены из металла или сплава, отличного от металла диска (так как составляют с диском одно целое), что не всегда рационально, а иногда даже недопустимо.

Лопатки третьего типа так же рациональны с конструктивной точки зрения, как и лопатки второго типа. Наличие бандажа, выполненного за одно целое с лопатками, даже улучшает их характеристики, но технология изготовления таких лопаток не позволяет получить точные геометрические размеры профиля лопаток. Отливка по выплавляемым моделям дает значительные погрешности, а обработка закрытых профилей лопаток затруднена.

Технологический процесс изготовления каждого из трех типов лопаток имеет свои особенности. Большое влияние на технологический процесс оказывает также материал лопаток.

Лопатки газовых турбин работают в тяжелых условиях — при высокой температуре и высоких напряжениях от центробежных сил. Материал лопаток должен обладать хорошей жаропрочностью и вместе с тем удовлетворительно обрабатываться резанием и давлением. Материал для литых лопаток должен обладать высокими литейными свойствами. Материал приварных лопаток должен хорошо свариваться с материалом диска. Для изготовления лопаток турбины применяются следующие стали и сплавы: 1Х18Н9Т, ЗОХГСА, ЭИ69, ВЛ7-20 и другие.

Для кратковременной работы при не очень высоких температурах могут применяться сплавы на алюминиевой основе типа АК4.

 

Корпусные детали турбонасосных агрегатов можно разделить на следующие основные группы:

1. Корпусы насосов.

2. Корпусы турбин.

3. Выхлопные патрубки и коллекторы.

4. Крышки.

Рис.78

Корпусные детали ТНА

 

Большинство корпусных деталей ТНА, рис.78, имеет сложную форму, образованную криволинейными, плоскими и цилиндрическими поверхностями. Криволинейные поверхности, образующие улитки, полости, выемки, не подвергаются механической обработке, но зачищаются для удаления неровностей поверхности. Некоторые из таких поверхностей обозначены буквой H.

Для установки подшипников, уплотнений и других деталей, примыкающих к валам турбин и насосов, в корпусах делаются расточки, выточки, посадочные пояски. Эти посадочные места механически обрабатываются с высокой точностью—по 2 или 1 -му классу. Взаимное биение посадочных поверхностей допускается в пределах 0,03-0,05 мм, а непараллельность торцев — 0,03-0,08 мм. С такой же высокой точностью обрабатываются места стыков корпусных деталей друг с другом по плоскостям разъема П. Особенно жесткие требования к посадочным и стыковочным местам предъявляются в конструкциях ТНА, имеющих общий вал турбины и насосов.

Сочетание в одной детали необработанных поверхностей, имеющих относительно грубые допуски, с поверхностями, обработанными с высокой точностью, — одна из характерных особенностей корпусных деталей.

Материал для корпусов выбирается исходя из условий их работы, возможно минимального веса и технологичности конструкции. Корпусы насосов изготовляют чаще всего из алюминиевых литейных сплавов типа АЛ4, обладающих высокими литейными свойствами при достаточной прочности.

Корпусы турбин также предпочтительно изготовлять из сплавов типа АЛ4, если это допускается по температурным условиям. При высокой температуре газов корпусы турбин изготовляют из жаропрочных нержавеющих сталей типа 1Х18Н9Т. Корпусы насосов для перекачивания агрессивных жидкостей изготовляют из титановых сплавов, обладающих высокой коррозионной стойкостью. Иногда по условиям минимального веса и конструктивным соображениям корпусные детали изготовляются штамповкой из листа с последующей сваркой. Для сварных штампованных корпусов применяют сплавы ЭИ606, ЭИ654, сталь 1Х18Н9Т и другие.

Сварные корпусы из листовых материалов, как правило, дешевле и легче литых, поэтому они находят широкое применение.

Рис.79

Сварной корпус турбины:


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.