Впрыск жидкости или вдув газа в расширяющуюся часть сопла — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Впрыск жидкости или вдув газа в расширяющуюся часть сопла

2017-11-18 334
Впрыск жидкости или вдув газа в расширяющуюся часть сопла 0.00 из 5.00 0 оценок
Заказать работу

Для создания сравнительно небольших управляющих воздействий и сил можно вводить рабочее тело в расширяющуюся часть сопла через отверстия (сопла), расположенные в стенке сопла, рис.103. Четырехсопел достаточно, чтобы создавать боковые управляющие силы по тангажу и рысканию. Сопла каждого квадранта вступают в работу после открытия клапана установленного на трубопроводе, который подводит жидкость или газ.

При вводе рабочего тела через сопло газ или пары жидкости поступают в поток продуктов сгорания. На участке сопла перед местом ввода рабочего тела обеспечивается торможение части потока, устанавливается фронт косого скачка и образуется зона повышенного давления. В результате этого истекающая струя продуктов сгорания отклоняется от осевого направления и возникает боковая сила, направленная в сторону сопла, через которое вводится рабочее тело.

В качестве газообразного рабочего тела могут быть использованы:

газы (азот, аргон, гелий и т.д.), обеспечивающие предварительный наддув баков с основными компонентами топлива;

генераторный газ;

продукты сгорания, перепускаемые из камеры сгорания или сужающейся части сопла.

 

 
 

Рис.103

Газодинамическая система управляющих моментов и сил

Изменение величины тяги отдельных камер многокамерного двигателя

Если изменить величину тяги жестко закрепленных диаметрально расположенных двигателей, входящих в состав двигательной установки, то можно создать управляющий момент относительно центра масс ракеты и обеспечить ее разворот в плоскостях тангажа и рыскания.

 

Система регулирования величины вектора тяги ЖРД

Величина тяги ЖРД определяется расходом топлива в камеру. Расход, а, следовательно, и тягу можно изменять варьируя:

а) при вытеснительной подаче - давление в баках компонентов топлива;

б) при насосной подаче - частоту вращения вала ТНА;

в) при вытеснительной и насосной подаче - регуляторами расхода, устанавливаемыми на магистралях перед камерой (для вытеснительной подачи) и управляемыми приводами.

Основными условиями обеспечения устойчивого и плавного горения при снижении тяги двигателя являются одновременное сохранение перепада давления на форсунках и давления продуктов сгорания в камере.

Условие поддержания постоянства перепада давления на форсунках при работе двигателя с изменяющейся тягой осуществляется варьированием: числа форсунок, через которые компоненты топлива впрыскиваются в камеру сгорания; площади проходного сечения форсунки: плотности компонентов топлива (путем их насыщения газом); коэффициента соотношения компонентов топлива km.

Если различная величина тяги ЖРД с насосной системой подачи обеспечивается изменением частоты вращения насосов компонентов топлива, то турбина ТНА должна иметь систему, управляющую её мощностью. Нашли применение температурный, расходный и смешанный способы изменения мощности турбины ТНА.

Температурный способ применяется для двухкомпонентных ЖГТ; он

состоит в изменении температуры генераторного газа, подаваемого на турбину,

для чего на одной из магистралей питания газогенератора устанавливают регулятор расхода с электро - или гидроприводом, позволяющим увеличивать или уменьшать расход одного из компонентов в ЖГГ, а, следовательно, и коэффициент соотношения km для газогенератора.

Расходный способ состоит в изменении расхода газа через турбину при поддержании его постоянной температуры, что обеспечивается постановкой на подающих магистралях ЖГТ регуляторов расхода со специальными стабилизаторами, поддерживающими неизменным величину km.

При смешанном способе изменения мощности турбины одновременно изменяются и турбина и расход газа, подаваемого в камеру.

Билет №17

1. Общие сведения и классификация ЖРТ (5.3).

2. способы воспламенения горючих смесей) (9.3).

 

Общие сведения о жидкостных ракетных топливах (ЖРТ) Классификация ЖРТ

Успешное освоение космического пространства осуществляется в основном с помощью жидкостных ракетных двигательных установок (ЖРДУ). Жидкие ракетные топлива, по сравнению с твердыми (ТРТ) обеспечивают лучшие энергетические характеристики, возможность многократного включения и выключения двигателя, а также оперативное изменение тяги при полете ЛА. Перспективное в принципе использование ядерных ракетных двигателей сдерживается в настоящее время их массовыми характеристиками, а также сложностями, связанными с обеспечением радиационной безопасности и отвода тепла от активной зоны после выключения двигателя, вследствие остаточного тепловыделения радиоизотопов — продуктов цепной реакции деления. Несомненно, что ЖРТ останутся основным энергетическим источником для ракетных двигателей различного назначения на ближайшие десятилетия.

В ракетных двигателях на химическом топливе выделение энергии происходит за счёт следующих химических реакций:

а) реакции окисления—восстановления (окисления), когда энергия выделяется при реакции между окислительными и горючими элементами; топливо состоит в этом случае по крайней мере из двух веществ — окислителя и горючего;

б) реакции разложения, когда тепло выделяется в процессе разложения сложного вещества на более простые; топливо в этом случае может состоять только из одного вещества;

в) реакции рекомбинации (соединения), когда тепло выделяется при соединении одноименных атомов или радикалов в молекулы.

Окислитель и горючее в общем случае являются сложными соединениями. в состав которых могут входить как окислительные, так и горючие элементы, а также нейтральные.

Горючим является такое вещество, которое независимо от того, содержатся в нем окислительные элементы или нет, для полного окисления своих горючих элементов требует окислителя извне. Так, например, этиловый спирт С2Н5ОН, кроме горючих элементов (С и Н), содержит в себе и окислительный элемент — кислород, но его совершенно недостаточно для полного окисления горючих элементов спирта; поэтому этиловый спирт является горючим.

Окислителем является вещество, в котором хотя и могут быть горючие элементы, но окисляющих элементов в нем имеется значительный избыток, так что при полном окислении его собственных горючих элементов остается свободное количество окислительных элементов, которые могут быть использованы для окисления какого-либо другого горючего. Например, азотная кислота HNO3 или перекись водорода Н2 02 содержат в себе горючий элемент — водород, однако окислительный элемент (кислород) в них имеется в таком количестве, что при полном окислении водорода азотной кислоты или перекиси водорода в них остается избыток кислорода, который можно использовать для окисления какого-либо горючего; поэтому HN03 и Н202 являются окислителями.

К горючим элементам относятся углерод С, водород Н, бор В, алюминий Аl, литий Li и другие. Окислительными элементами являются фтор F, кислород О, хлор О. Фтор и кислород значительно превосходят по эффективности другие окислительные элементы.

Доли окислителя и горючего в топливе определяются величиной, называемой соотношением компонентов. Теоретическим (стехиометрическим) соотношением компонентов называется такое минимальное количество окислителя, которое необходимо для полного окисления 1 кг горючего. Иначе говоря, теоретическое соотношение компонентов, это такое отношение расходов окислителя и горючего, при котором окислитель полностью окисляет горючее, не оставаясь при этом в избытке.

Действительным соотношением компонентов называется действительное отношение расходов окислителя и горючего, подаваемых в камеру, которое может отличаться от теоретического. Обычно

Отношение называется коэффициентом избытка окислителя. Коэффициент избытка окислителя, при котором получается максимальная величина удельного импульса, называется оптимальным.

На рис.26 представлена классификация жидкостных ракетных топлив, а в таблице 1 - их основные параметры и области применения.

Тип топлива Характер воспламе­нения Область приме­нения
Катали­затор -       Рабочее тело для турбины
Катали­затор -       Рабочее тело для турбины или вспомогательно­го ЖРД
Самовосп. 3,0       Маршевые дви­гатели РН типа «Про­тон»
Несамовосп. 2,7       Маршевые дви­гатели РН «Со­юз» и 1-ой сту­пени «Энергия»
Самовоспл. 3,0       Маршевые дви­гатели ракет и малых РН
Самовоспл. 15, 0       Опытные образ­цы сверхмощных РН
Несамо-воспл. 6,0       Маршевые дви­гатели верхних ступеней РН

Топлива ракетных двигателей могут быть разделены на следующие: жидкие топлива раздельной подачи (многокомпонентные) и жидкие унитарные (однокомпонентные) топлива.

В случае жидкого топлива раздельной подачи выделение энергии происходит в результате реакции окисления — восстановления. Процесс окисления условно может быть представлен как обмен электронами на внешней электронной оболочке атомов, участвующих в этом процессе. При этом атомы горючих элементов отдают свои электроны, а атомы окислительных элементов приобретают их.

Унитарным (однокомпонентным) топливом может быть такое индивидуальное вещество или такая заранее приготовленная смесь веществ, которые при определенных условиях выделяют тепло в результате химических реакций разложения или окисления; в последнем случае все необходимые для окисления элементы находятся в самом унитарном топливе. Несомненным преимуществом унитарных жидких топлив перед жидкими топливами раздельной подачи является большая простота конструкции двигателей, использующих эти топлива, так как при этом требуется лишь одна линия системы подачи.

Однако жидкие унитарные топлива не нашли широкого применения в ЖРД и используются главным образом для вспомогательных целей, например, для привода турбин турбонасосных агрегатов, а также для вспомогательных двигателей малых тяг, предназначенных для ориентации и стабилизации летательного аппарата. Это объясняется тем, что приемлемые по своим эксплуатационным свойствам жидкие унитарные топлива обладают меньшей эффективностью в сравнении с широко используемыми топливами раздельной подачи. Известны унитарные жидкие топлива, обладающие сравнительно высокой эффективностью, но они неприемлемы для эксплуатации, в основном из-за большой склонности к взрыву.

Несмотря на заметное упрощение системы питания однокомпонентные ЖРТ, как мономолекулярные, так и смесевые, широкого распространения в ракетной технике не получили вследствие относительно низких энергетических характеристик и взрывоопасности.

Жидкие топлива раздельной подачи находят самое широкое применение, так как они обеспечивают двигателю достаточно высокие удельные параметры при сравнительно приемлемых эксплуатационных свойствах.

Многокомпонентные гетерогенные топлива включают в себя высокоэнергетические пары типа 02 +Ве, О3+Ве, F2+Li и водород в качестве разбавителя. Металл в порошкообразном состоянии может находиться в горючем и смесь при необходимости может быть подана в камеру центробежным насосом. Обычно в состав гетерогенных топлив включается полимерное горючее - связка, предотвращающее вынос из камеры несгоревшего порошкообразного горючего.

Топлива, имеющие температуру кипения при Рн=101325 Па более 293 К называются высококипящими, а менее 120 К - низкокипящими (криогенными). К последним относятся 02,ж, Н2,Ж, F2,ж и они заправляются в ракету, как правило, непосредственно перед пуском.

Топлива раздельной подачи могут быть самовоспламеняющимися и несамовоспламеняющимися. К первым относятся такие топлива, воспламенение которых начинается самопроизвольно при контакте окислителя и горючего в условиях, имеющихся в камере при запуске, без какого-либо дополнительного вмешательства. Несамовоспламеняющиеся топлива для первичного воспламенения (при запуске двигателя) требуют средства зажигания.

Смесь окислителя и горючего в общем случае является взрывоопасной. Поэтому все факторы, исключающие возможность накопления такой смеси в двигателе, повышают надежность двигателя. С этой точки зрения более выгодны самовоспламеняющиеся топлива, так как в силу высокой химической активности компонентов такого топлива накопление смеси окислителя и горючего практически невозможно. Высокая химическая активность самовоспламеняющихся топлив часто является важным условием обеспечения устойчивой работы двигателя.

Наибольшее распространение получили двухкомлонентные самовоспламеняющиеся и несамовоспламеняющиеся топлива. В литературе можно встретить классификацию ЖРТ на взрывоопасные и взрывобезопасиые. Однако, такое деление топлив чисто условно, так как при несоблюдении правил хранения все ЖРТ склонны к саморазложению, воспламенению и взрыву.

 

Способы воспламенения горючих смесей

В классификации задач, возлагаемых на системы управления ДУ, задача воспламенения горючих смесей отнесена к обеспечению нестационарного процесса запуска двигателя и решается с помощью автономных систем воспламенения топлив в камерах и газогенераторах ЖРД.

Под системой воспламенения топлив предусматривается полный цикл мероприятий по организации не только начального этапа воспламенения компонентов топлива, но также и весь цикл обеспечения этого процесса без аномальных явлений (срывов горения, незапусков, пульсации, забросов давлений и других возможных видов отказов на этапе запуска).

Естественно, что принудительного воспламенения требуют несамовоспламеняющиеся топлива. Ими являются углеводородные горючие, работающие с кислородом или с азотнокислотными окислителями, а также кислородно-водородное топливо.

Существует несколько способов воспламенения горючих смесей.

Химический способ предусматривает на начальном этапе запуска использование самовоспламеняющихся компонентов топлива, которые запасают в трубопроводах или специальных емкостях перед камерами двигателя и отделяют их от основного топлива мембранами свободного прорыва. Запас пусковых порций самовоспламеняющегося топлива должен обеспечивать работу камеры на пусковом топливе, примерно равном 80 % времени запуска. Целесообразность применения этого способа ограничивается ДУ однократного включения.

Добавка триэтилбора или триэтилалюминия («2 — 3 %) к керосину обеспечивает надежное одно- и многократное его воспламенение с кислородом. Однако высокая токсичность этих добавок сдерживает их широкое практическое применение, так как токсичным становится не только горючее, но и продукты сгорания, содержащие эти добавки.

Пиротехнический способ воспламенения горючих смесей предусматривает установку на стартовых позициях внутрь камеры двигателя системы пирозарядов, одновременное срабатывание которых обеспечивает надежное воспламенение пусковой части топлива, рис.89. Число пирозарядов зависит от размеров камеры двигателя. Для одновременного воспламенения многокамерных двигателей в каждой камере должно быть размещено не менее шести зарядов, ориентированных друг относительно друга так, чтобы первый воспламенившийся заряд поджигал соседний с ним. Для обеспечения надежного воспламенения горючих смесей необходима определенная мощность тепловыделения в короткий промежуток времени, которая способна не только инициировать горение топлив, но и уменьшить начальную задержку его воспламенения.

Систему пирозарядов можно применять для многократного включения газогенераторов и камер двигателя. При этом число установленных зарядов будет определять число включений. Однако если не применять специальных мероприятий по теплоизоляции этих зарядов, то в процессе работы двигателя ИЛИ после его останова вследствие чрезмерного нагрева зарядов возможно их самопроизвольное срабатывание.


Рис89


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.