История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
2017-09-30 | 672 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Пластичность генома прокариот обусловлена существованием эффективных природных механизмов горизонтального переноса генов между клетками бактерий, которые не являются родительскими и дочерними, а также между бактериями и другими организмами. Обмен генетической информацией служит важным фактором эволюции прокариот.
Известны три основные пути переноса ДНК:
1 трансформация - поглощение свободной ДНК из внешней среды;
2 конъюгация - внедрение ДНК из бактериальной клетки-донора в клетку-реципиент;
3 трансдукция - распространение генов бактерий умеренными бактериофагами.
Трансформация - это перенос генетического материала от одного организма к другому путем поглощения свободной ДНК" из внешней среды и включения её в свой геном. Посредством генетической рекомбинации часть трансформирующей молекулы ДНК может обмениваться с частью хромосомной ДНК донора.
Наибольшей трансформирующей активностью обладает нативная ДНК. Минимальная длина цепочки ДНК, способной интегрироваться в реципиентную хромосому, составляет около 500 п.н. Однако обычно в рекомбинации участвуют фрагменты донорной ДНК длиной около 200 т.п.н, или около 1/200 всей бактериальной хромосомы.
Частота трансформации может быть очень высокой в зависимости от числа компетентных клеток в данной популяции. Генетическая компетентность - это способность бактериальных клеток к поглощению экзогенной ДНК с последующим изменением генома. Компетентными бактерии могут становиться в результате их обработки физическими или химическими агентами, которые способствуют поглощению трансформирующей ДНК.
В отличие от такой искусственной компетентности, природная компетентность - это генетически и физиологически детерминированное специфическое свойство данного штамма. Природная компетентность может быть индуцибельной или конститутивной. Так, у 81гер1х>соссш рпешпошае компетентность индуцируют диффундирующие факторы - пептиды, экстретируемые в среду. Конститутивной компетентностью обладает возбудитель гонореи. Способность к трансформации у Bacillus subtilis зависит от фазы роста: при лимитировании его скорости роста примерно 10% клеток становятся компетентными, причем определяющим фактором возникновения компетентности служит дефицит азота.
|
Стадии трансформации.
Процесс трансформации протекает в несколько стадий. Вначале ДНК адсорбируется на клеточной стенке, затем проникает внутрь и, наконец, рекомбинирует с клеточной хромосомной ДНК.
Первый этап - связывание экзогенной ДНК с поверхностью компетентных клеток. Адсорбированная на этом этапе ДНК не отделяется от клеток при их отмывании. Адсорбция ДНК происходит на специальных структурах, обеспечивающих её проникновение через клеточную стенку и плазматическую мембрану. В частности, на поверхности компетентной клетки НаеторЬПш тйиепхае образуются везикулярные структуры и меняется липидный и белковый состав клеточной стенки.
Связь между поверхностными структурами и ДНК нековалентная - при обработке детергентами или фенолом ДНК отделяется от клетки. Природным субстратом для связывания служит только двухцепочечная молекула ДНК.
Следующий этап - фрагментация, при которой обе цепи связанной ДНК подвергаются разрезанию, которое происходит в случайных точках, но приводит к образованию фрагментов с определенным распределением по размерам. В связанном состоянии ДНК остается чувствительной к воздействию ДНКазы, образуя на поверхности клетки вытянутую структуру. Средняя величина образующихся при разрезании фрагментов составляет примерно 19 т.п.н.
Третий этап - поглощение трансформирующей ДНК. На этой стадии связанная с клеткой-реципиентом ДНК в течение 1-2 минут полностью теряет чувствительность к ДНКазе. Считается, что это обусловлено либо транспортом ДНК через мембрану, либо проникновением её в участки, недоступные для действия нуклеаз. ДНК поглощается как линейная молекула со скоростью 50 - 200 п.н./сек. В процессе поглощения одна цепь трансформирующей ДНК подвергается деградации под действием нуклеаз и внутрь бактериальной клетки проникает только одноцепочечная молекула ДНК в виде составляющих её фрагментов.
|
Наиболее детально этот этап трансформации описан у НаеторЫ1ш тйиепгае. Поглощение ДНК у данного микроорганизма носит характер высокоизбирательного процесса в отношении гомологичной ДНК. Распознавание гомологичной и гетерологичной ДНК обеспечивают присутствующие в ДНК этого микроба «сайты поглощения», состоящие из 11 п.н. и повторяющиеся через интервалы длиной 4 т.п.н. В этом процессе, а также в поглощении экзогенной ДНК и её защите от нуклеаз также участвуют везикулярные мембранные выросты, называемые трансфор-мосомами. Они локализованы преимущественно в точках контакта плазматической и наружной мембран. Добавление гомологичной ДНК вызывает переход трансформосом во внутреннее пространство клетки с потерей чувствительности ДНК к нуклеазам. После проникновения в цитоплазму происходит высвобождение ДНК из трансформосом.
Параллельно этому у НаеторЬПш тйиепгае возрастает способность к рекомбинации - в хромосомной ДНК возникают одноцепочечные бреши и «хвосты», т.е. она как бы подготавливается для включения экзогенной ДНК.
Завершающий этап трансформации - интеграция ДНК, которая осуществляется по принципу «разрыв-воссоединение». В ДНК клетки-реципиента включается лишь одна цепь трансформирующей ДНК, которая спаривается с гомологичным участком ДНК в реципиентной клетке, с цепью, являющейся комплементарной ей. Продукт рекомбинации представляет собой спаренный трехцепочечный гетеродуплекс из донорной и реципиентной молекул ДНК. Поскольку донорная ДНК ранее была подвергнута фрагментации на поверхности клетки, в процессе её интеграции происходит ряд независимых рекомбинационных событий в различных участках реципиентной ДНК.
Затем в результате двойного кроссинговера между однонитчатой донорной ДНК и двунитчатой ДНК реципиента происходит образование рекомбинантной хромосомы реципиента. При этом в участке ДНК, ограниченном сайтами кроссинговера, одна нить ДНК имеет реципиентный сегмент, другая - донорный. Уже после первого раунда репликации ДНК образуются два типа клеток: исходные и трансформированные, которые несут ДНК донора.
|
Первые стадии трансформации - связывание экзогенной ДНК, её фрагментация, поглощение и деградация одной цепи -осуществляются с равной эффективностью независимо от её гомологии с ДНК реципиента. Эффективность последней стадии трансформации, а именно интеграция чужеродной ДНК, напрямую связана со степенью гомологии между донорной и реципиентной ДНК.
У грамотрицательных колиформных бактерий состояния высокоэффективной природной компетентности в том виде, в каком оно было рассмотрено выше, вообще не существует. По-видимому, трансформация не служит у этих организмов важным механизмом обмена генетической информацией. Однако в связи с тем, что кишечная палочка имеет важное значение как модель для генетических исследований, поиску способов её трансформации были посвящены специальные работы.
Как удалось установить, обработка клеток кишечной палочки раствором СаС\2 или смеси других солей на холоду делает их компетентными для поглощения экзогенной ДНК в течение короткого периода нагревания. Другим способом создания компетентности у данного вида бактерий (и не только у них) является введение ДНК с помощью электропорации, при которой клетки подвергаются воздействию высоковольтного электрического заряда, что обеспечивает проникновение ДНК через клеточную мембрану. В отличие от существующего в природе высокоэффективного механизма трансформации с превращением экзогенной ДНК в линейную одноцепочечную форму, при искусственной компетентности клетки кишечной палочки поглощают кольцевую двухцепочечную ДНК.
Трансформация служит хорошим инструментом для картирования хромосом, поскольку трансформированные клетки включают различные фрагменты ДНК. Определение частоты одновременного приобретения двух заданных характеристик (чем ближе друг к другу расположены гены, тем более вероятно, что они оба включатся в один и тот же участок ДНК) даёт информацию о взаиморасположении соответствующих генов в хромосоме. Таким образом, трансформацию активно используют для определения порядка расположения генов, расстояний между ними в молекуле ДНК и построения генетических карт.
|
Трансфекция.
Частным случаем трансформации является трансфекция. Данное явление впервые было описано в 1964 году на примере ВасШш зиЫШз. Его сущность заключается в продуктивной инфекции бактерий данного вида ДНК, выделенной из лизирующих их фагов.
Как и в случае классической трансформации, чувствительными к трансфекции являются лишь те клетки, которые компетентны к восприятию трансформирующей ДНК.
Явление трансфекции также установлено при обработке клеток кишечной палочки ДНК, выделенной из разных кишечных фагов, а также в случае инфицирования растений табака инфекционной РНК, выделенной из вируса мозаичной болезни табака. Ряду исследователей удалось наблюдать формирование вируса оспы после инфицирования компетентных клеток млекопитающих ДНК, выделенной из оспенного вируса.
Механизм трансфекции зависит от рекомбинационной системы клеток-реципиентов и рекомбинационный механизм трансфекции отличается от рекомбинационного механизма трансформации. В частности, трансфекция Bacillus subtilis ДНК из фага Н1 требует объединения 4-5 молекул фаговой ДНК. Механизм компетентности клеток к трансформации и трансфекции одинаковый.
|
|
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!