Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.

2017-08-23 347
Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах. 0.00 из 5.00 0 оценок
Заказать работу

Хромосомная ДНК упакована в компактную структуру с помощью специализированных белков. Все ДНК-связывающие белки эукариот подразделяются на два класса: на гистоны (histones, структурные белки эукариотических хромосом) и на негистоновые хромосомные белки. Комплекс обоих классов белков с ядерной ДНК эукариотических клеток называется хроматином. Гистоны являются уникальной характеристикой эукариот и присутствуют в огромных количествах на клетку (около 60 миллионов молекул каждого типа на клетку).Гистоны - относительно небольшие белки с очень большой долей положительно заряженных аминокислот (лизина и аргинина); положительный заряд помогает гистонам крепко связываться с ДНК (которая заряжена сильно отрицательно) независимо от ее нуклеотидной последовательности. Возможно, гистоны только изредка диссоциируют от ДНК и таким образом, вероятно, оказывают влияние на любой процесс, происходящий на хромосомах.Типы гистонов распадаются на две главных группы - нуклеосомные гистоны и Н1 гистоны, образуя семействовысококонсервативных основных белков, состоящее из пяти больших классов - H1 и H2A,H2B, H3 и H4. Гистоны H1 более крупные (около 220 аминокислот) и оказались менее консервативными в ходе эволюции. Размер полипептидных цепей гистонов лежит в пределах от 220 (H1) до 102 (H4) аминокислотных остатков. Гистон H1 сильно обогащен остатками Lys, для гистонов H2A и H2B характерно умеренное содержание Lys, полипептидные цепи гистонов H3 и H4 богаты Arg. Внутри каждого класса гистонов (за исключением H4) на основании аминокислотных последовательностей различают несколько субтипов этих белков. Такая множественность особенно характерна для гистонов класса H1 млекопитающих. В этом случае различают семь субтипов, названных H1.1-H1.5, H1o и H1t.Гистоны H3 и Н4 принадлежат к наиболее консервативным белкам. Такая эволюционная консервативность предполагает, что для функции данных гистонов важны почти что все их аминокислоты. N- концевая часть данных гистонов может быть обратимо одифицирована в клетке за счет ацетилирования отдельных остатков лизина, что убирает положительный заряд лизинов.Гистоны подвергаются многообразным посттрансляционным модификациям, которые вовлечены в разнообразные биологические процессы, например, регуляцию активности генов, репарацию ДНК,конденсацию хроматина.

 

30. Виды РНК, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: ДНК-РНК-белок. Роль компонентов в ее реализации.

Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле. Транскрипция и трансляция. Условно весь процесс транскрипции и трансляции можно отобразить в cхеме: Транскрипция представляет собой процесс воспроизведения информации, хранящейся в ДНК, в виде одноцепочной молекуле и РНК (информационной РНК, которая переносит информацию о строении белка из ядра клетки в цитоплазму клетки к рибосомам). Этот процесс проявляется в синтезе молекулы и РНК по матрице ДНК. Молекула и РНК состоит и нуклеотидов, каждый из которых включает в себя остаток фосфорной кислоты сахар рибозу и одно из четырёх азотистых оснований (А, Г, Ц и У-урацил вместо Т-тюлина). В основе синтеза и РНК лежит принцип комплиментарности, т.е. против А в одной цепочке ДНК располагается У в и РНК, а против Г в ДНК - Ц в и РНК (см. рис. Транскрипция- на предыдущей странице), таким образом, и РНК является комплиментарной копией ДНК или её определённого участка, и содержит информацию, кодирующую аминокислоту или белок. Каждая аминокислота в ДНК и РНК шифруется последовательностью из 3-х нуклеотидов, т.е. - триплетом, который получил название кодонЕсли в транскрипции узнавание двух молекул друг другом проявляется только в принципе комплиментарности, то в трансляции помимо комплиментарности (временное объединение кодона и РНК и антикодона РНК (транспортной РНК, которая подносит аминокислоты нужные для синтеза белка, к месту синтеза - рибосома - см. рис. Транскрипция) молекулярное узнавание проявляется в процессе присоединения аминокислоты к тРНК с помощью фермента кодазы. Дело в том, что молекула тРНК состоит из головки, включающей в себя антиэАОК-триплет, состоящий из последовательности трёх нуклеотидов, и хвостика имеющего определённую форму. Сколько существует видов антикозонов тРНК, столько и существует форм хвостиков, и каждому антикозону соответствует своя форма хвостика в тРНК. Сколько существует форм хвостиков, столько существует видов форм фермента кодазы, который присоединяет аминокислоты к хвостику, а форма каждой кодазы подходит только к форме определённой аминокислоты. Т.о., тРНК носит с собой информацию не только в п последовательности нуклеотидов в антикозоне но и в форме хвостика молекулы. А основная передача информации здесь заключается в воспроизведении последовательности аминокислот в белке, которую подсказывает ферменту, кодирующему белок и РНК.

 

31. Уровни упаковки ДНК в составе хроматина.

Хромосомы состоят из хроматина — смеси ДНК и белков в соотношении ~ 1:1. Именно благодаря взаимодействию с белками молекула ДНК имеет компактную структуру. Средняя длинна одной нити ДНК человека (если растянуть) 4 см. То есть в ядре каждой клетки содержится около 1 метра ДНК.
Упаковка молекулы ДНК в хромосоме имеет три уровня:
1. нуклеосомы, нуклеосомная нить
2. соленоидная спираль
3. петли
Известная каждому своим видом двойная спираль ДНК «намотанная» вокруг комплекса из 4-х пар белковых молекул образует «бусину» - нуклеосому. Нуклеосомы, связанные между собой участками молекулы ДНК, составляют нить, которая в свою очередь закручена в форме соленоида (это по одной из существующих моделей), один виток — 6 нуклеосом. Эта структура на следующем уровне упаковки образует петли. В таком виде ДНК присутствует в ядре клетки на этапе роста клетки, синтеза её компонентов, в т. ч. удвоения ДНК.
Однако на разных стадиях жизни клетки конденсация хроматина разная. В период роста клетки хроматин в ядре не конденсирован, компактность его расположения при этом отличается для разных участков хромосомы.
Когда же происходит процесс деления клетки хроматин всё более уплотняется и петли, о которых говорилось выше, образуют «розетки», плотно уложенные одна к другой (тоже по одной из существующих моделей), по 18 петель на кольцо. В результате этого хроматин принимает вид конденсированных хромосом, так хорошо известный нам из учебников.

32. Митотические хромосомы. Морфологическая организация и функции. Кариотип (на примере человека).

Митотические хромосомы образуются в клетке во время митоза. Это неработающие хромосомы, и молекулы ДНК в них уложены чрезвычайно плотно. Достаточно сказать, что общая длина метафазных хромосом примерно в 104 раз меньше, чем длина всей ДНК, содержащейся в ядре. Благодаря такой компактности митотических хромосом обеспечивается равномерное распределение генетического материала между дочерними клетками при митозе.
Кариоти́п — совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Определение кариотипа

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Процедура определения кариотипа

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлечённые из пробы крови, деление которых провоцируется добавлением митогенов, либо культуры клеток, интенсивно делящихся в норме (фибробласты кожи, клетки костного мозга). Обогащение популяции клеточной культуры производится остановкой деления клеток на стадии метафазы митоза добавлением колхицина — алкалоида, блокирующего образование микротрубочек и «растягивание» хромосом к полюсам деления клетки и препятствующего тем самым завершению митоза.

Полученные клетки в стадии метафазы фиксируются, окрашиваются и фотографируются под микроскопом; из набора получившихся фотографий формируются т. н. систематизированный кариотип — нумерованный набор пар гомологичных хромосом (аутосом), изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом получались окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможой с появлением методик дифференциального окрашивания хромосом.

Классический и спектральный кариотипы.

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.