Методики инфракрасной диагностики электрооборудования и ВЛ — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Методики инфракрасной диагностики электрооборудования и ВЛ

2017-08-11 1177
Методики инфракрасной диагностики электрооборудования и ВЛ 0.00 из 5.00 0 оценок
Заказать работу

ОСНОВНЫЕ ПОЛОЖЕНИЯ

МЕТОДИКИ ИНФРАКРАСНОЙ ДИАГНОСТИКИ ЭЛЕКТРООБОРУДОВАНИЯ И ВЛ

РД 153-34.0-20.363-99

 

УДК 621.311

Дата введения 2000-06-01

 

 

РАЗРАБОТАНО Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС"

Исполнители С.А. Бажанов, А.В. Кузьмин, М.А. Вихров

 

УТВЕРЖДЕНО Департаментом стратегии развития и научно-технической политики РАО "ЕЭС России" 14.12.99 г.

Первый заместитель начальника А.П. Берсенев

 

ВВЕДЕНО ВПЕРВЫЕ

 

 

Внедрение приборов инфракрасной техники (ИКТ) в энергетику является одним из основных направлений развития высокоэффективной системы технической диагностики, которая обеспечивает возможность контроля теплового состояния электрооборудования и электроустановок без вывода их из работы, выявления дефектов на ранней стадии их развития, сокращения затрат на техническое обслуживание за счет прогнозирования сроков и объемов ремонтных работ.

Тепловизионный контроль электрооборудования и воздушных линий электропередачи предусмотрен РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования".

Для обеспечения единых технических требований к условиям и порядку проведения ИК-диагностики электрооборудования и оценки результатов измерений ОАО "Фирма ОРГРЭС" разработаны Основные положения. При разработке настоящего РД учтены результаты работ по инфракрасной диагностике, проводившихся ОАО "Фирма ОРГРЭС" и рядом энергосистем, использованы информационные материалы фирм "Инфраметрикс" (США), "АГЕМА" (Швеция).

В Основных положениях рассмотрены погрешности при ИК-контроле и способы их устранения, конструктивные особенности электрооборудования, связанные с протеканием тепловых процессов при его работе, приведены нормы оценки теплового состояния токоведущих частей, термограммы характерных неисправностей электрооборудования, указаны основные принципы выбора приборов инфракрасной техники, способы метрологической поверки пирометров и др.

Настоящие РД рассчитаны на специализированный инженерно-технический персонал, обладающий необходимыми знаниями в области ИК-диагностики.

Предложения по совершенствованию РД просьба направлять в ОАО "Фирма ОРГРЭС" по адресу: 105023, Москва, Семеновский пер., д. 15.

 

ОБЩИЕ ПОЛОЖЕНИЯ

 

Принцип организации системы инфракрасной диагностики в общем виде представлен на рис.1-1 и включает в себя комплекс взаимосвязанных циклов, определяющих последовательность проведения операций и их информативность.


Система инфракрасной диагностики энергетического оборудования и технологических сооружений

 

 

Рис.1-1

 

Регламент проведения ИК-диагностики (1) включает в себя периодичность и объем измерений контролируемого объекта или совокупности объектов.

Периодичность ИК-диагностики электрооборудования РУ и ВЛ определена лабораторией ИКТ с учетом опыта его эксплуатации, режима работы, внешних и других факторов и отражена в соответствующих рекомендациях.

Операция по проведению ИК-диагностики (2) должна выполняться приборами ИКТ, обеспечивающими достаточную эффективность в определении дефекта на работающем оборудовании.

Выявление дефекта (3) должно осуществляться по возможности на ранней стадии развития, для чего прибор ИКТ должен обладать достаточной чувствительностью даже при воздействии ряда неблагоприятных факторов, могущих наблюдаться в эксплуатации (влияние отрицательных температур, запыленности, электромагнитных полей и т.п.). При анализе результатов ИК-диагностики (4) должна осуществляться оценка выявленного дефекта и прогнозирование возможностей его развития и сроков восстановления.

После устранения выявленного дефекта (5) необходимо провести повторное диагностирование (6) для суждения о качестве выполненного ремонта.

Базу данных (8) для ответственных объектов (трансформаторы, выключатели, разрядники) желательно закладывать в компьютер, с тем чтобы она отражала не только результаты ИК-диагностики, но и всю информацию о данном объекте, включая тип, срок службы, условия эксплуатации, режимы работы, объемы и виды ремонтных работ, результаты профилактических испытаний и измерений и другие сведения, позволяющие на основании рассмотрения всего комплекса факторов, заложенных в память компьютера, судить о техническом состоянии объекта.

 

Рис.2-1. Влияние излучательной способности

 

Коэффициенты излучения металлов с ростом температуры обычно увеличиваются (см. табл.2-1).

Обычно коэффициент излучения зависит от состояния поверхности металла.

Поскольку токоведущий узел электрического аппарата или установки может включать в себя несколько компонентов из разнородных металлов, поверхности которых окрашены, имеют окисные пленки или разную степень обработки поверхности, т.е. различные коэффициенты излучения, при инфракрасном контроле могут возникнуть предположения о перегревах на участках с повышенными коэффициентами излучения.

В подобных случаях целесообразно провести пофазное сравнение результатов измерения, оценить состояние поверхности перегретого участка (точки) с помощью бинокля, выяснить объем ремонтных работ, проводившихся на данном токоведущем узле, и т.п. В том случае, если коэффициент излучения контролируемого объекта известен, его фактическая температура может быть определена по формуле

,

где Трад - радиационная температура, измеренная ИК-прибором;

Е - коэффициент излучения контролируемой поверхности.

В практике может возникнуть необходимость в определении коэффициента излучения контролируемого объекта или его узла.

Для этого на участок контролируемой поверхности наносится покрытие из матовой черной краски или наклеивается кусок ленты для фотошаблонов, коэффициенты излучения которых близки к единице.

После того как покрытие или лента приобретает температуру объекта, осуществляется измерение Тфакт.

Измерив температуру Трад неокрашенного участка, по приведенной выше формуле можно определить его коэффициент излучения (приложение 3).

 

СОЛНЕЧНОЕ ИЗЛУЧЕНИЕ

Солнечная радиация нагревает контролируемый объект, а также при наличии участков (узлов) с хорошей отражательной способностью создает впечатление о наличии высоких температур в местах измерения.

Эти явления особенно проявляются при использовании ИК-приборов со спектральным диапазоном 2-5 мкм.

Для исключения влияния солнечной радиации рекомендуется осуществлять ИК-контроль в ночное время суток (предпочтительно после полуночи) или в облачную погоду. При острой необходимости измерение в электроустановках при солнечной погоде рекомендуется производить для каждого объекта поочередно из нескольких диаметрально противоположных точек.

 

ВЕТЕР

Если ИК-контроль осуществляется на открытом воздухе, необходимо принимать во внимание возможность охлаждения ветром контролируемого объекта (контактного соединения). Так, превышение температуры, измеренное при скорости ветра 5 м/с, будет примерно в два раза ниже, нежели измеренное при скорости ветра 1 м/с. В диапазоне скоростей 1-7 м/с справедлива формула

,

где D Т 1 - превышение температуры при скорости ветра V 1;

D Т 2 - то же при скорости ветра V 2.

Измерения при скорости ветра выше 8 м/с рекомендуется не проводить.

При пересчетах полученных значений превышения температуры можно помимо формулы пользоваться коэффициентами коррекции (табл.2-2).

 

Таблица 2-2

 

Скорость ветра, м/с 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0
Коэффициент коррекции 1,0 1,36 1,64 1,86 2,0 2,23 2,4 2,5

 

Следует отметить, что зачастую сила ветра при ИК-диагностике бывает переменной, поэтому указанный пересчет может привести к дополнительным погрешностям.

 

НАГРУЗКА

Температура токоведущего узла (контактного соединения) зависит от нагрузки и прямо пропорциональна квадрату тока, проходящего через контролируемый участок:

,

где D T 1 - превышение температуры при токе I 1;

D T 2 - то же при токе I 2.

При необходимости пересчет желательно проводить от более высокой нагрузки к более низкой и при близких значениях токов (отличия на 20-30%).

 

ТЕПЛОВАЯ ИНЕРЦИЯ

При переменной токовой нагрузке приходится считаться с тепловой инерцией контролируемого объекта.

Так, тепловая постоянная времени для контактных узлов аппаратов составляет порядка 20-30 мин, поэтому при определении тока нагрузки по амперметру контролируемого присоединения не следует учитывать кратковременные "броски" тока, связанные с коммутационными процессами или режимом работы потребителя. Тепловая постоянная для вентильных разрядников составляет порядка 6-8 ч, поэтому результаты измерения тепловизором только что поставленного под напряжение разрядника могут оказаться ошибочными.

 

ДОЖДЬ И СНЕГ

Дождь, туман, мокрый снег в значительной степени охлаждают поверхность объекта, измеряемого с помощью ИК-прибора, и в определенной мере рассеивают инфракрасное излучение каплями воды; ИК-контроль допускается проводить при небольшом снегопаде с сухим снегом или легком моросящем дождике.

 

МАГНИТНЫЕ ПОЛЯ

При работе с ИК-приборами вблизи шин генераторного напряжения, реакторов и вообще в электроустановках с большими рабочими токами приходится сталкиваться с проблемой защиты ИК-прибора от влияния магнитного поля.

Последнее вызывает искажение картины теплового поля объекта на кинескопе тепловизора или нарушает работу радиационного пирометра. При наличии магнитных полей при проведении ИК-контроля рекомендуется:

а) если токоведущие шины находятся над головой оператора с тепловизором или пирометром или вблизи него, постараться, перемещаясь около контролируемого объекта, выбрать местоположение с минимальным влиянием магнитного поля;

б) использовать объектив с меньшим углом наблюдения (например, 7x7°), что позволит осуществлять контроль за объектом с удаленного расстояния;

в) при контроле с помощью тепловизора с оптико-механическим сканированием можно сканер расположить вблизи объекта, ВКУ с кинескопом, используя длинный кабель от сканера, вынести за пределы зоны влияния магнитного поля.

 

ТЕПЛОВОЕ ОТРАЖЕНИЕ

В ряде случаев, особенно при ИК-контроле токоведущих частей, расположенных в небольших замкнутых объемах (например, в КРУ или КРУН), приходится сталкиваться с возможностью получения ошибочных результатов из-за теплового отражения от нагревательных элементов, ламп освещения, соседних фаз и др. (рис.2-2).

 

 

Рис.2-2. Влияние теплового отражения

 

Последнее проявляется при контроле токоведущей части с малым коэффициентом излучения, обладающей хорошей отражательной способностью.

В результате термографическая съемка может показать горячую точку (пятно), хотя в действительности это просто тепловое отражение.

Поэтому рекомендуется в подобных случаях производить ИК-обследование объекта под различными углами зрения и изменением местоположения оператора с ИК-прибором. При необходимости на время измерения отключается освещение объекта и т.п.

 

НАГРЕВ ИНДУКЦИОННЫМИ ТОКАМИ

В токоведущих частях электроустановок, обтекаемых значительными токами (например, шины генераторного напряжения), зачастую наблюдаются нагревы, обусловленные индукционными токами, циркулирующими в магнитных материалах. В качестве последних в токоведущих шинах могут быть пластины шинодержателей, крепежные болты, близко расположенные металлоконструкции и т.п. Нагревы от индукционных токов, если они расположены вблизи контактных соединений, могут создавать ложное впечатление о перегреве последних.

 

 

Съемка осуществлялась тепловизором со спектральным диапазоном 2-5 мкм. На термограмме виден очаг нагрева ножа разъединителя дальней фазы и тепловое отражение на поверхности фарфорового изолятора средней фазы.

Генераторы

Таблица 3-1

 

Контролируемый узел при ИК-контроле Применяемые приборы Объем получаемой информации
Испытание стали статора Тепловизор Определение зоны повреждения в стали статора, распределение и значение температур, глубины залегания дефекта
Испытание на нагрев То же Определение теплового поля генератора, эффективность систем охлаждения, значения температур, их распределение, выявление аномальных зон нагрева
Проверка паек лобовых частей обмотки статора Тепловизоры или пирометр Определение температур нагрева поверхности изоляции паек лобовых частей
Проверка работы щеточного аппарата Пирометр (1:60) Определение температур нагрева щеток, поводков и других элементов щеточного аппарата
Система тиристорного возбуждения Тепловизор Обследование теплового состояния устройств системы возбуждения

 

ИСПЫТАНИЕ СТАЛИ СТАТОРА

Испытание стали статора турбо- и гидрогенераторов производят в соответствии с требованиями Норм испытания электрооборудования (Л.1), ОСТ 16.0.800.343-76 (Л.2) и других нормативных документов.

Испытания проводят при вынутом роторе и наложенных на его статор намагничивающей и контрольной обмоток.

У гидрогенераторов испытания возможно проводить как при вынутом роторе, так и без его выемки (Л.3).

Как известно, превышение температуры, измеренное тепловизором при испытаниях, будет являться функцией интенсивности радиации с поверхности расточки и ее излучательной способности. Поэтому перед проведением ИК-контроля необходимо тщательно обследовать поверхность расточки статора. Поверхность расточки статора обычно окрашивается и имеет коэффициент излучения порядка 0,94 независимо от цвета пигментации.

Если с поверхности удалена краска и имеется ржавчина, то коэффициент излучения достигает 0,8 и фактический нагрев в 10 °С будет измерен как 12,5 °С.

В процессе испытания стали статора периодически снимаются термограммы зубцов и всей поверхности сердечника. Первая термограмма снимается до подачи напряжения в намагничивающую обмотку, затем при прогреве статора через 20 и 45 мин и через 15, 30 и 45 мин при остывании. Термограммы снимаются при обесточенной намагничивающей обмотке. ОСТ (Л.2) установлена методика оценки состояния стали статора по результатам ИК-контроля. В частности, отмечается, что локальные тепловыделения в стали статора могут отличаться по следующим признакам: яркости пятна, форме, характеру изменения яркости пятна во времени при остывании сердечника после отключения обмотки нагрева (табл.3-2).

 

Таблица 3-2

 

Яркость пятна Место обнаружения локального нагрева Временные характеристики Описание локального нагрева
1. Слабая Область головки зубца Быстро возникает и быстро затухает Поверхностное несильное замыкание листов или их "заглаживание" при ударе
2. Сильная То же Быстро возникает, но характеризуется длительным послесвечением 1. Поверхностное, сильное повреждение листов 2. Сильное повреждение листов на шейке зубца
3. Слабая Область головки зубца Быстро возникает и быстро затухает Не очень сильное повреждение листов в районе шейки зубца
4. Слабая То же Медленно возникает и медленно затухает Не очень сильное повреждение листов в глубине паза
5. Слабая и сильная Соседние зубцы пакета (в пределах сегмента) Медленно возникает и затухает Повреждение в области дна паза
6. Слабая и сильная, переменная с усилением в отдельных точках Соседние зубцы паза, сплошь или с разрывами, часто два параллельных зубца Быстро возникает, затухает с разной скоростью Повреждение клином шейки зубцов
7. Чаще слабая Пятно, захватывающее группу головок зубцов Медленно возникает и медленно затухает Глубинные зоны нагрева, в том числе неоднородности, плотности опрессовки и т.п.

 

Оценка состояния стали статора производится исходя из месторасположения локального тепловыделения. Поверхностные тепловыделения создают легко обнаруживаемые интенсивные очаги нагрева. Оценка их допустимости определяется предельной разностью нагрева между максимальными (D Тмакс) и минимальными (D Тмин) превышениями температуры зубцов в конце испытаний, составляющей не более 10 °С.

Кроме того, наибольшие превышения температуры D Тмакс в конце испытаний не должны превышать значений, указанных в таблице 3-3.

 

Таблица 3-3

 

Марка стали Э41, Э42 (1511) (1512) Э43, Э44 (1513) (1514) Э310, Э320, Э330 (3411) (3412) (3413)
вдоль проката поперек проката
Наибольшее превышение температуры, °С (D Тмакс)        

 

Глубинные локальные тепловыделения создают слабый нагрев на поверхности, которая удовлетворяет нормам по значению превышения температуры. Поэтому допустимость глубинных локальных тепловыделений определяется по значению расчетной мощности нагрева исходя из следующих соображений.

По известным в процессе проведения испытаний стали статора значениям:

t 1 - суммарное время нагрева, ч;

t 2 - время от момента отключения питания намагничивающей обмотки до момента термографической съемки, ч;

D T 0 - превышение температуры в локальном тепловыделении сразу после отключения нагрева, °С;

D T 2 - превышение температуры в локальном тепловыделении в момент съемки, т.е. через время t 2 после отключения питания намагничивающей обмотки, °С - определяется глубина залегания дефекта и мощность тепловыделения в очаге нагрева.

Для этого вычисляется отношение .

Для найденного значения отношения и времени t 2 по кривым рис.3-1 определяют ориентировочную глубину залегания дефекта, выбирая кривую, с которой наиболее точно совпадает точка пересечения координат.

 

 

Рис.3-1. График определения глубины залегания очага нагрева

 

По значению t 1 и найденному значению глубины залегания дефекта rx определяют параметр r т (рис.3-2). Тогда мощность тепловыделения в дефекте определяется как: Вт. Найденное значение Рх не должно превышать 100 Вт.

 

 

Рис.3-2. График определения параметра r т


 

Температура в точках: 1 - 53,9 °С;

в исправной зоне стали статора - 45,2 °С.

Тепловизионная съемка производилась при испытании стали статора, при временно отключенной намагничивающей обмотке. Оператор с тепловизором при съемке находился на верхней кромке статора. Температура окружающего воздуха - 25 °С.

ИСПЫТАНИЕ НА НАГРЕВ

Испытание генераторов на нагревание проводится в соответствии с Методическими указаниями, разработанными ВНИИЭ (Л.4).

Определение картины теплового поля генератора, выявление температурных аномалий на поверхности статора, оценка эффективности работы газоохладителей и теплообменников, охлаждения подшипников и др. с выдачей термограмм позволяет получить дополнительный информационный материал.

 

Маслонасосы

Температура нагрева на поверхности корпуса маслонасоса и трубопроводов работающего трансформатора будет практически одинакова. При появлении неисправности в маслонасосе (трения крыльчаток, витковое замыкание в обмотке электродвигателя и т.п.) температура на поверхности корпуса маслонасоса должна повыситься и будет превышать температуру на поверхности маслопровода.

 

Дутьевые вентиляторы

Оценка теплового состояния электродвигателей вентиляторов осуществляется сопоставлением измеренных температур нагрева. Причинами повышения нагрева электродвигателей могут быть: неисправность подшипников качения, неправильно выбранный угол атаки крыльчатки вентилятора, витковое замыкание в обмотке электродвигателя и т.п.

 

Термосифонные фильтры

При ИК-контроле можно судить о работоспособности термосифонных фильтров (ТФ) трансформаторов.

Как известно, ТФ предназначен для непрерывной регенерации масла в процессе работы трансформатора. Движение масла через фильтр с адсорбентом происходит под действием тех же сил, которые обеспечивают движение масла через охлаждающие радиаторы, т.е. разностей плотности горячего и холодного масла. ТФ подсоединен параллельно трубам радиатора системы охлаждения, поэтому у работающего фильтра температуры на входе и выходе, если трансформатор нагружен, должны различаться между собой. В налаженном фильтре будет иметь место плавное повышение температуры по его высоте.

При использовании мелкозернистого силикагеля, шламообразования в фильтре, случайном закрытии задвижки на трубопроводе фильтра, при работе трансформатора в режиме х.х. циркуляция масла в фильтре будет незначительна или отсутствовать вообще.

В этих случаях температура на входе и выходе фильтра будет практически одинакова.

 

Переключающие устройства

Переключающие устройства серии РНТ и им подобные, встраиваемые в трансформаторы, состоят из переключателя и реактора, расположенных в баке трансформатора, а также контактора. Контактор переключающего устройства размещается в отдельном кожухе, расположенном на стенке бака трансформатора и залитом маслом.

Контроль состояния контактов переключателя ввиду его глубинного расположения в баке трансформатора весьма проблематичен.

При перегреве контактов контактора ввиду небольшого объема залитого в него масла на стенках бака контактора будут иметь место локальные нагревы.

 

Радиаторы

Неисправность плоского крана радиатора или ошибочное его закрытие приведет к перекрытию протока масла через радиатор.

В этом случае температура труб радиаторов будет существенно ниже, нежели у работающего радиатора.

С течением времени в эксплуатации поверхности труб радиаторов подвергаются воздействию ржавчины, на них оседают продукты разложения масла и бумаги, что порой приводит к уменьшению сечения для протока масла или полному его прекращению.

Трубы с подобными отклонениями будут "холоднее" остальных.

 

Датчик температуры

Практически единственным критерием оценки эффективности работы системы охлаждения является температура верхних слоев масла трансформатора, измеряемая с помощью термометров, либо термометрического сигнализатора с электроконтактным манометром, либо дистанционного термометра сопротивления, устанавливаемых в карманах (гильзах) крышки бака.

Контроль температуры масла в этих случаях может быть связан с существенными погрешностями, которые обусловлены инструментальной точностью измерения, местом размещения гильзы и другими факторами.

Поэтому при термографическом обследовании трансформатора необходимо также сравнивать значения температур на крышке бака, измеренные тепловизором, с данными датчика температуры.

 

Методика ИК-контроля

Термографическое обследование трансформатора во многом является вспомогательным средством оценки его теплового состояния и исправности в работе связанных с ним систем и узлов.

Термографическому обследованию трансформатора должно предшествовать ознакомление с конструкцией выполнения обмоток, системы охлаждения, результатами работы трансформатора, объемом и характером выполнявшихся ремонтных работ, длительностью эксплуатации, анализом повреждений трансформаторов идентичного исполнения (если они происходили), результатами эксплуатационных испытаний и измерений и т.п.

Поверхности баков трансформаторов, термосифонных фильтров, систем охлаждения должны быть осмотрены и с них по возможности должны быть удалены грязь, следы масла, закрашена ржавчина, т.е. созданы условия для обеспечения одинаковой излучательной способности поверхностей трансформатора.

Обследование предпочтительно проводить ночью (перед восходом солнца), при отключенном искусственном освещении трансформатора, в безветренную, недождливую погоду, при максимально возможной нагрузке и в режиме х.х.

Тепловизор или его сканер должен располагаться на штативе, как можно ближе к трансформатору, на оси средней фазы, с использованием объектива 7-12 °С и обеспечивать возможность как видео-, так и аудиозаписи.

После настройки температурного режима записи тепловизора ведется покадровая регистрация термоизображений начиная с верхней части крайней фазы (например А) по направлению к фазе С с наложением кадров друг на друга около 10% размера. Достигнув поверхности бака фазы С, объектив сканера опускается ниже, далее покадровая съемка продолжается в противоположном направлении, таким образом процесс съемки ведется, пока не будет записана вся поверхность бака, включая расположенные под его днищем маслонасосы, маслопроводы и другие узлы. Термографической съемке подвергается вся доступная для этого поверхность бака по периметру. Тепловизор (2) во всех точках съемки должен находиться на одинаковом расстоянии от трансформатора (1).

 

 

Термограмма поверхности бака автотрансформатора АТДЦТН-135 МВ·А 300 кВ с замыканием стяжных шпилек

 

 

Распределение температуры по высоте бака АТ-1 (Ось ввода 500 кВ) показывает на очаг внутреннего нагрева в зоне отвода обмотки 500 кВ

 

 

Рис.3-5. План термографической съемки трансформатора

 

Так, при установке выносной системы охлаждения (3) количество точек съемки увеличивается до 6.

Термографическая съемка сопровождается речевыми комментариями, записываемыми на звуковую дорожку кассеты видеомагнитофона. В комментариях должны отражаться: режим работы трансформатора, ход ведения обследования, описание явлений, фиксируемых тепловизором, и другие события, связанные с видеозаписью.

В последующем осуществляется покадровое совмещение результатов съемки в единый развернутый "тепловой" план.

Участки плана с аномальными температурами нагрева должны сопоставляться с технической документацией на трансформатор, характеризующей конструктивное расположение отводов обмоток, катушек, зон циркуляции масла, магнитопровода и его элементов и т.п.

При проведении планового ИК-контроля состояния трансформатора оценивается работоспособность отдельных его узлов в объеме, указанном в табл.3-7.

 

Таблица 3-7

 

№ п.п. Объект контроля Критерии оценки Примечание
       
  Контактное соединение ошиновка-ввод Превышение температуры нагрева (D t),°С ___________________
  Верхняя часть остова маслонаполненного ввода Характер распределения температуры по высоте m/н ввода  
  Крышка бака Сравнение с показаниями датчика температуры Для уточнения теплового режима работы трансформатора
  Контактор РПН Сравнение измеренных температур на стенке контактора пофазно Для определения работоспособности контактов контактора РПН
  Термосифонный фильтр (ТФ) Сравнение измеренных температур на входе и выходе ТФ Для определения работоспособности ТФ
  Вентиляторы обдува Сравнение температур на поверхности корпуса электродвигателей __________________
  Трубы радиаторов системы охлаждения Аномальные нагревы участков труб Для выявления труб с отложениями
  Маслонасосы Сравнение температур на поверхности корпуса маслонасоса Определение работоспособности маслонасосов
  Болты нижнего разъема колокола бака Сравнение с температурой нагрева поверхности бака Для предупреждения термического разложения резинового уплотнения
  Маслорасширитель Соответствие измеренного уровня масла фактическому Для определения работоспособности датчиков уровня масла

 

Рис.3-6 - 3-8

Масляный выключатель МГ-110

Масляный выключатель МГ-110 (Iном = 500 А) имеет две дугогасительные камеры на фазу (рис.3-12). Возможными местами нагрева контактной токоведущей системы могут являться: неподвижный - промежуточный контакты (дугогасительная камера), промежуточный - подвижный контакты, а также аппаратный зажим - токоведущая шина.

 

 

Рис.3-12. Масляный выключатель МГ-110:

1 - подвижный контакт; 2 - промежуточный контакт; 3 - неподвижный контакт;

4 - контактные выводы;

I - нагрев в зоне дугогасительного устройства

 

I. Выключатель МКП-110М

Нагрев дугогасительной камеры выключателя фазы В

Дефект - лопнула гроверная шайба, в результате чего нарушился контакт гибкой связи в нижней части камеры.

 

 

Температура в точке "1" - 20,6 °С.

II. Выключатель МКП-110М

Нагрев дугогасительной камеры выключателя фазы С

Дефект - нарушение верхнего контакта камеры.

 

Наряду с ИК-контролем контактной системы выключателя проверяется состояние верхней части маслонаполненного ввода, встроенных трансформаторов тока и устройства подогрева бака.

Оценка контактов дугогасительных камер производится на основании измерения температур нагрева поверхностей бака выключателя в зоне расположения камер.

 

Масляный выключатель МГ-35

Масляный выключатель МГ-35 (номинальный ток 600 А) ввиду низкой надежности не получил широкого распространения в энергосистемах. Конструктивно выключатель МГ-35 представляет собой систему из трех вертикальных изоляторных колонок, собранных на установленной на опорной конструкции металлической раме.

Подвод тока к подвижному токоведущему стержню 6 (рис.3-15) производится через гибкую связь 2, расположенную под верхним колпаком 1 каждой фазы. Подвижной токоведущий стержень приводится в движение двумя гетинаксовыми штангами 4, симметрично расположенными по сторонам конденсаторной втулки и связанными шарнирно с воздушными рычагами приводного механизма.

 

 

Рис.3-15. Масляный выключатель МГ-35:

1 - верхний колпак; 2 - гибкая связь; 3 - фарфоровая покрышка; 4 - гетинаксовая штанга;

5 - конденсаторная втулка; 6 - подвижной токоведущий стержень; 7 - дугогасительная камера; 8 - нижний вывод; 9 - неподвижный контакт; 10 - промежуточный контакт; 11 - медная контактная полоса; 12 - верхний вывод;

II - характер изменения температуры по высоте выключателя при исправной контактной системе; I - то же при дефектной контактной системе

 

В нижней фарфоровой покрышке расположена дугогасительная камера, которая собрана на промежуточном фланце.

К последнему с наружной стороны крепится токовый зажим 8, а с внутренней - медная контактная полоса 11.

На контактной полосе укреплен неподвижный рабочий контакт 9.

При включении выключателя наконечник подвижного контакта входит в дугогасительную камеру, упирается в находящийся в нем промежуточный контакт и, отжимая его, упирается в неподвижный сферический контакт. Ток при включенном положении выключателя проходит от верхнего вывода 12 через гибкую связь 2, далее по токоведущему стержню 6 в розеточный контакт дугогасительной камеры 7, затем через промежуточный контакт 10, неподвижный контакт 9 и медную полосу 11, расположенную на дне нижнего бака, на нижний вывод 8.

Большое количество внутренних контактных соединений, не поддающихся визуальному осмотру, и сложный процесс взаимодействия контактов при коммутации с выключателем требуют периодического контроля в эксплуатации. При проведении ИК-контроля температурные аномалии возможны как в верхней части выключателя, так и в нижней. В первом случае вероятна возможность нарушения контактных соединений гибкой связи, во втором - в контактной системе: розеточный контакт - промежуточный - неподвижный - медная полоса - нижний вывод.

 

Масляный выключатель ВМП-10

Дефект: нагрев дугогасительной камеры и узла подсоединения шины к линейному выводу выключателя

 

 

Масляный выключатель ВМП-10

Дефект: нагрев узла подсоединения шины к нижнему выводу выключателя

 

При тепловизионном контроле маломасляных выключателей серии ВМП-10 проверяется болтовое соединение шины и вывода выключателя, состояние роликового токосъема и контактов дугогасительной камеры.

Ухудшение состояния контактов роликового токосъема и дугогасительной камеры обычно проявляется в виде локальных нагревов на поверхности корпуса выключателя.


Воздушные выключатели

Воздушные выключатели выпускаются на номинальные напряжения 110 кВ и выше. На рис.3-18 приведен общий вид воздушного выключателя серии ВВН, наиболее распространенной конструкции выключателя.

 

 

Рис.3-18. Воздушный выключатель ВВН:

1 - контакт; 2 - емкостный делитель напряжения; 3 - отделитель; 4 - опора отделителя;

5 - омический делитель напряжения; 6 - средний фланец; 7 - дугогасительная камера;

8 - подвижный контакт; 9 - опора камеры; 10 - опорный изолятор; 11, 12, 13, 14 - нагревы соответственно в камерах отделителя, дугогасительной, конденсаторе, фарфоровом воздуховоде

 

 

Гасительная камера воздушного выключателя серии ВВН:

1 - аппаратный вывод; 2 - верхний фланец; 3 - фарфоровая покрышка; 4 - неподвижный контакт; 5 - средний фланец; 6 - механизм подвижного контакта; 7 - подвижный контакт

 

 

Воздухонаполненный отделитель воздушного выключателя серии ВВН:

1 - верхний фланец; 2 - средний фланец; 3 - фарфоровая покрышка; 4 - механизм подвижного контакта; 5 - неподвижный контакт; 6 - аппаратный вывод

 


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.186 с.