Ознакомление со средозащитной техникой — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Ознакомление со средозащитной техникой

2017-07-25 196
Ознакомление со средозащитной техникой 0.00 из 5.00 0 оценок
Заказать работу

Под средозащитной техникой понимается совокупность технических средств и технологических методов, предназначенных для защиты окружающей природной среды от промышленных загрязнений. Все методы и средства защиты среды можно разделить на две большие группы: активные и пассивные.

Активные методы направлены непосредственно на источник загрязнения, они позволяют свести к минимуму поступление в среду всех видов отходов.

Пассивные методы и средства не оказывают прямого воздействия на источник загрязнения, они носят защитный характер и служат для ослабления негативного влияния на биосферу образовавшихся отходов и вредных физических факторов. К ним относятся рациональное размещение и локализация источников загрязнения, системы очистки газовых выбросов и сточных вод, установки для переработки, утилизации и обезвреживания отходов, глушители шума, виброизоляторы технологического оборудования, экраны для защиты от ионизирующих и электромагнитных излучений и т.п.

Мероприятия по рациональному размещению источников загрязнения решаются на различном уровне (общегосударственном, региональном, местном) в зависимости от масштабов, отраслевой структуры производства и экологической техноемкости территории с учетом всех факторов экологической обстановки.

Для ослабления действия техногенных эмиссии и вредных физических факторов применяют частичную локализацию и изоляцию как источников загрязнения, так и технических объектов и реципиентов возможного влияния (ведение технологического процесса в специальных камерах, герметизация вспомогательного оборудования, звукоизоляция, экранизация и т.п.). Очистка эмиссии включает различные механические, гидромеханические, термические, физические, физико-химические, химические и биологические средства и методы. Для оценки систем очистки воздуха и воды используют коэффициент очистки, производительность, экономичность.

Средства защиты атмосферы. Наиболее рациональным направлением охраны воздушного бассейна от загрязнения являются технологические процессы, обеспечивающие минимальный объем газообразных отходов, локализацию токсичных веществ в зоне их образования и значительную замкнутость газовых потоков. Однако до настоящего времени основным способом снижения вредных выбросов в атмосферу остается внедрение систем газоочистки.

Техника газоочистки весьма многообразна как по методам улавливания и обезвреживания вредных примесей, так и по конструкции газоочистных устройств. Для улавливания аэрозолей (пыли и туманов) используют аппараты сухой, мокрой и электрической очистки. Работа сухих пылеулавливающих аппаратов основана на различных механизмах осаждения взвешенных частиц: гравитационном (под действием силы тяжести), инерционном, центробежном или фильтрационном. В мокрых пылеуловителях осаждение происходит вследствие контакта взвешенных частиц с жидкостью, чаще всего водой. Метод электрической очистки основан на ионизации газа в электрическом поле высокого напряжения и осаждении заряженных частиц пыли на электродах электрофильтра. Для очистки газов от содержащихся в них газообразных и парообразных примесей применяют методы абсорбции, адсорбции, каталитические и термические методы.

Способы очистки газовых потоков характеризуются составом используемого оборудования, необходимыми ресурсами для его работы, параметрами входного и выходного потоков, влиянием на основной рабочий процесс. На выбор метода влияют состав, физико-химические свойства и концентрация извлекаемых компонентов, температура газа, наличие сорбентов, требуемая степень очистки, возможность рекуперации уловленных веществ.

Рис. 12. Классификация методов и аппаратов для очистки промышленных выбросов

 

С экологической точки зрения, основным показателем работы очистного оборудования является эффективность очистки:

где Свх и Свых - массовые концентрации примесей в газе до и после очистки.

Важной характеристикой аппарата очистки служит величина аэродинамического сопротивления, которое определяется как разность давлений газового потока на входе и выходе. От этой величины зависят качество очистки, мощность побудителя движения газов, необходимые энергозатраты, а, следовательно, и расходы по эксплуатации газоочистного агрегата.

Для очистки от пыли необходимо учитывать физико-химические характеристики пыли: плотность, фракционный состав, адгезивные свойства, смачиваемость, гигроскопичность, электрические свойства частиц и слоя пыли, способность пыли к самовозгоранию и образованию взрывоопасных смесей. Для улавливания пыли сухим способом используют пылеосадительные камеры, инерционные пылеуловители, жалюзийные аппараты, циклоны, ротационные и вихревые пылеуловители, фильтры и электрофильтры.

Рис. 13. Пылеулавливающие аппараты сухой очистки:

А - пылеосадительная камера: 1 - корпус, 2 - бункер, 3 - перегородка;

Б - инерционный пылеуловитель: 1 - корпус, 2 - перегородка;

В - жалюзийный пылеуловитель: 1 - корпус, 2 - решетки;

Г - циклон: 1 - корпус, 2 - входной патрубок, 3 - выходная труба, 4- бункер

Для тонкой очистки газовых выбросов широко используют различные типы фильтров. Фильтрующими элементами могут быть гибкие и жесткие пористые перегородки из разнообразных материалов - от тонких тканей до перфорированных металлических стенок и керамики. Наибольшее распространение получили рукавные фильтры из тканевых материалов. В процессе эксплуатации рукава периодически встряхиваются и продуваются для восстановления фильтрующей способности. Эффективность очистки от пыли в рукавных фильтрах достигает 99%.

Аппараты мокрой очистки газов отличаются высокой эффективностью улавливания мелкодисперсных пылей, возможностью очистки от пыли горячих и взрывоопасных газов. В качестве газопромывающей жидкости обычно используется вода. Существуют разнообразные конструкции таких аппаратов. Схемы наиболее распространенных показаны на рис.14.

 

Рис. 14. Пылеуловители мокрой очистки:

А - полный форсуночный газопромыватель: 1 - корпус, 2 - форсунки;

Б - скруббер Вентури: 1 - труба-распылитель, 2 - циклоп-пылеуловитель

Электрическая очистка - один из наиболее совершенных методов очистки газов от мелкодисперсной пыли. Установка электрической очистки состоит из собственно электрофильтра и питающего устройства, предназначенного для подачи тока высокого напряжения на электроды электрофильтра. Отрицательно заряженные аэрозольные частицы под действием электрического поля движутся к осадительному электроду, а относительно небольшая масса положительно заряженных частиц оседает на коронирующем электроде.

Улавливание туманов

Для очистки газовых выбросов от туманов кислот, щелочей, масел и других жидкостей применяют волокнистые и сеточные фильтры-туманоуловители и мокрые электрофильтры. Их действие основано на захвате частиц жидкости волокнами при пропускании туманов через фильтрующий элемент с последующим отеканием жидкости. Для улавливания грубодисперсных примесей используют брызгоуловители, состоящие из пакетов металлических сеток. Часто применяют двухступенчатые установки, включающие фильтр для улавливания крупных капель и фильтр для очистки от тумана. Мокрые электрофильтры, применяемые для улавливания туманов, по принципу действия аналогичны сухим электрофильтрам.

Для очистки газов от газо- и парообразных загрязнителей применяют четыре основных способа: промывку выбросов и поглощение примесей жидкостью (абсорбция), поглощение примесей твердыми активными веществами (адсорбция), поглощение примесей за счет каталитических превращений и термическая нейтрализация отходящих газов. Для улавливания паров летучих растворителей используют также метод конденсации, в основе которого лежит уменьшение давления насыщенного пара растворителя при понижении температуры. Очистка выбросов методом абсорбции состоит в разделении газообразной смеси на составные части путем поглощения некоторых газовых компонентов жидким поглотителем (абсорбентом). Для контакта газового потока с абсорбентом газ пропускают через абсорберы - насадочные башни, форсуночные, барботажнопенные скрубберы и другие аппараты. Отработанный раствор подвергают регенерации, десорбируя загрязняющее вещество, и возвращают его в процесс очистки либо выводят в качестве побочного продукта.

Адсорбционные методы очистки газов основаны на способности некоторых твердых пористых тел - адсорбентов - селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции поглощаемые молекулы газа удерживаются на поверхности твердого тела межмолекулярными силами притяжения. В основе хемосорбции лежит химическое взаимодействие между адсорбентом и адсорбируемым газом. В качестве адсорбентов применяют пористые материалы с развитой поверхностью: активные угли, силикогель, алюмогель, цеолиты. Процесс очистки проводят в адсорберах, которые выполняются в виде вертикальных, горизонтальных или кольцевых емкостей, заполненных адсорбентом. Наиболее распространены адсорберы периодического действия, в которых отработанный поглотитель по мере необходимости заменяют либо регенерируют. Адсорбированные вещества удаляют десорбцией инертным газом или паром, иногда проводят термическую регенерацию.

Многоступенчатая очистка. Сложный состав промышленных выбросов и высокие концентрации содержащихся в них токсичных компонентов предопределяют применение многоступенчатых систем очистки и обезвреживания отходящих газов, представляющих комбинацию рассмотренных выше методов и аппаратов. В этом случае очищаемые газы последовательно проходят через несколько автономных аппаратов очистки либо через комплексный агрегат, включающий несколько ступеней очистки. Такие решения возможны для обеспечения высокоэффективной очистки газов от пылей, при одновременной очистке от твердых и газообразных примесей, при очистке от твердых частиц и туманов и т.п.

Эффективность систем газоочистки определяется не только степенью очистки технологических и вентиляционных выбросов от вредных примесей, но и возможностью использования или нейтрализации и изоляции уловленных продуктов.

Средства защиты воды

Меры по защите водных объектов от промышленных загрязнений включают:

- применение безводных и маловодных технологий и замкнутых циклов водоснабжения;

- предотвращение или снижение загрязнения воды, забираемой из природных источников;

- очистку сточных вод.

Водообеспечение потребителей воды может быть прямоточным, последовательным и оборотным. При прямоточном водоснабжении вся забираемая вода за исключением безвозвратных потерь (испарение, пролив, включение в продукцию) после проведения технологического процесса возвращается в водоем. При последовательной схеме вода, поступающая из источника водоснабжения, многократно используется в нескольких процессах.

Наиболее перспективный путь уменьшения потребления свежей воды и сведения к минимуму сброса стоков в водоемы - внедрение оборотных и замкнутых систем водоснабжения. Оборотную воду используют в теплообменных аппаратах для отведения избыточного тепла, для промывки деталей, изделий, а также в качестве растворителя или реакционной среды. В зависимости от целевого назначения оборотного водоснабжения возможны схемы с охлаждением, с очисткой оборотной воды и комбинированные схемы с одновременной очисткой и охлаждением воды.

Для предотвращения коррозии, биологического обрастания трубопроводов и аппаратуры часть оборотной воды выводят из системы, добавляя свежую воду из водоема или очищенные сточные воды (продувочная вода). Кроме того, некоторая часть воды теряется на охладительных установках - градирнях (испарение с поверхности, разбрызгивание). Для компенсации безвозвратных потерь воды осуществляют подпитку системы из открытых водоемов и подземных источников водоснабжения. Количество добавляемой воды, как правило, не превышает 5-10% от ее количества, циркулирующего в системе. Применение оборотного водоснабжения позволяет уменьшить потребление свежей воды в промышленных производствах в 10-50 раз.

Рис. 15. Классификация методов очистки промышленных сточных вод.

В замкнутой (бессточной) системе вода используется в производственных процессах многократно без очистки или после соответствующей обработки, исключающей образование каких-либо отходов и сброс сточных вод в водоем. Замкнутые системы технически сложнее, но они в наибольшей степени соответствуют принципам безотходного производства. Их следует вводить на реконструируемых и вновь строящихся предприятиях.

Замкнутая система водоснабжения обеспечивает экономию свежей воды во всех производствах, максимальную рекуперацию сточных вод и практически исключает загрязнение окружающей среды.

Различные методы очистки сточных вод подразделяют на рекуперационные и деструктивные. Первые предусматривают извлечение из промышленных сточных вод ценных веществ и дальнейшую их переработку. При деструктивных методах очистки загрязнители разрушаются путем окисления или восстановления с последующим удалением разрушенных продуктов из воды в виде газов или осадков. Механическая очистка служит предварительным этапом очистки производственных сточных вод. Удаление взвешенных примесей достигается отстаиванием, фильтрованием или циклонированием. Отстаивание производят в отстойниках (рис. 10.9, А), песколовках, осветлителях различных конструкций. При отстаивании отделяются и осадки, и всплывшие примеси - жиры, масла, нефтепродукты, которые удаляют с помощью нефтеловушек. Для интенсификации осаждения взвешенных частиц вода подвергается действию центробежной силы в открытых или напорных гидроциклонах и центрифугах. Конструктивная схема гидроциклона аналогична схеме циклона для очистки газов.

 

Рис. 16. Аппараты механической очистки сточных вод:

А - горизонтальный отстойник: 1 - входной поток, 2 - отстойная камера, 3 - выходной поток, 4 - приемник;

Б - напорный гидроциклон

Фильтрование применяют для выделения из сточных вод тонкодисперсных примесей твердых или жидких веществ. Распространены два основных типа фильтров: зернистые и микрофильтры. В зернистых фильтрах воду пропускают через насадки из несвязных пористых материалов (антрацит, песок, мраморная крошка и др.). Фильтрующие элементы микрофильтров изготавливают из сеток с ячейками размером от 40 до 70 мкм и из сплошных пористых материалов. Для очистки сточных вод от маслопродуктов широко используют пенополиуретан, который обладает большой маслопоглотительной способностью.

Химическую очистку используют для удаления растворимых примесей из сточных вод перед спуском их в водоем или городскую канализацию, иногда до или после биологической очистки, а также в замкнутых системах водоснабжения. Основные методы химической очистки: нейтрализация, окисление и восстановление. Нейтрализации подвергают сточные воды, содержащие кислоты или щелочи с целью приведения реакции среды близкой к нейтральной (рН = 6,5 - 8,0). Нейтрализацию проводят смешиванием кислых и щелочных сточных вод, добавлением реагентов, фильтрованием сточных вод через нейтрализующие материалы. Осваивается способ нейтрализации щелочных вод дымовыми газами, содержащими СО2, SO2, NO4, что позволяет одновременно проводить эффективную очистку от вредных компонентов и самих газовых выбросов.

Окисление применяют для обезвреживания сточных вод от токсичных примесей (цианидов, растворенных соединений мышьяка и др.), извлечение которых нецелесообразно либо невозможно другими способами. В качестве окислителей при очистке сточных вод используют газообразный и сжиженный хлор, кислород воздуха, озон и другие реагенты. Озон, являясь сильным окислителем, способен разрушать в водных растворах органические вещества и другие примеси. Озонирование применяется для очистки сточных вод от нефтепродуктов, фенола, сероводорода, цианидов и других примесей. Одновременно обеспечивается устранение привкусов, запахов, обесцвечивание и обеззараживание воды. К преимуществам озонирования (по сравнению с хлорированием) относится и возможность получения озона непосредственно на очистных сооружениях в озонаторах, где он образуется из кислорода воздуха под действием электрического разряда.

Биологическая очистка сточных вод играет главную роль в освобождении воды от органических и некоторых минеральных загрязнений. Она сходна с природным процессом самоочищения водоемов. Биоочистка осуществляется сообществом организмов, которое состоит из различных бактерий, водорослей, грибков, простейших, червей и др. Процесс очистки основан на способности этих организмов использовать растворенные примеси для питания, роста и размножения.

Под действием микроорганизмов могут протекать два процесса - окислительный (аэробный) и восстановительный (анаэробный). В аэробных процессах микроорганизмы, культивирующиеся в активном иле либо в биопленке, используют растворенный в воде кислород. Для их жизнедеятельности необходимы постоянный приток кислорода и температура 20-30° С. Анаэробная очистка протекает без доступа кислорода, основной процесс здесь - сбраживание ила. Эти методы применяют для очистки от органики сильно концентрированных сточных вод и для обезвреживания осадков.

Биологическая очистка сточных вод может проходить в естественных условиях (на полях орошения, полях фильтрации, биологических прудах) и в искусственных сооружениях - аэротенках и биофильтрах разной конструкции. Биологическую очистку производственных сточных вод проводят обычно в искусственных условиях, где процессы очистки протекают с большей скоростью.

Аэротенк представляет собой разделенный перегородками на отдельные коридоры железобетонный резервуар, который оборудован устройствами для принудительной аэрации. Процесс очистки в аэротенке идет по мере пропускания через него аэририруемой смеси сточной воды и активного ила, состоящего из живых организмов и твердого субстрата (отмершей части водорослей и различных твердых остатков). За несколько часов основная масса органики перерабатывается. Из аэротенка смесь обработанной сточной воды и активного ила поступает во вторичный отстойник. Осевший на дно активный ил отводится в резервуар насосной станции, а очищенная сточная вода поступает либо на дальнейшую доочистку, либо дезинфицируется. В процессе биологического окисления происходит прирост биомассы активного ила. Избыток его направляется в сооружения по обработке осадка, а основная часть в виде циркуляционного активного ила снова возвращается в аэротенк.

В биофильтрах сточная вода фильтруется через слой кусковой загрузки, в качестве которой используют щебень, гравий, шлак, керамзит, пластмассу, металлическую сетку и другие материалы, на поверхности которых образуется биологическая пленка, выполняющая те же функции, что и активный ил. Она адсорбирует и перерабатывает органические вещества, находящиеся в сточных водах. Окислительная мощность биофильтров увеличивается при подаче в них сжатого воздуха в направлении, противоположном фильтрованию.

 

Рис. 17. Общая схема обработки, утилизации и сброса отводимых вод для основных отраслей хозяйства:

ВО - водный объект; КХ - коммунальное хозяйство; ПП - промышленное производство; ЭЭ - электроэнергетика; ОРЗ - орошаемое земледелие; СОП - система оборотного и повторного использования вод; ЛОС - локальные очистные сооружения; ЦОС - централизованные очистные сооружения; ОСП - очистные сооружения предприятий; ОДПС - система обработки дренажного и поверхностного стока

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.029 с.