Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Топ:
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Дисциплины:
2017-06-25 | 2209 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы N, а прочие силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.
Отношение приращения (изменения) длины элемента к его первоначальной длине называется относительным удлинением или продольной деформацией:
(17.2)
Очевидно, продольная деформация – безразмерная величина. В некоторых случаях ее выражают в процентах. При растяжении продольную деформацию считают положительной, а при сжатии – отрицательной.
Отношение изменения размера поперечного сечения к его первоначальному значению называют относительным поперечным сужением (расширением), или поперечной деформацией:
(17.3)
Продольную и поперечную деформации называют также линейными деформациями.
В известных пределах нагружения между (деформацией) и соответствующим (действующим в ее направлении) напряжением существует прямо пропорциональная (линейная) зависимость.
Это положение носит название закона Гука и записывается в виде
(17.4)
Коэффициент пропорциональности E называют модулем продольной упругости (модуль упругости 1-го рода; модуль Юнга). Е имеет ту же размерность, что и напряжение, т.е. выражается в Па или МПа.
Модуль продольной упругости – физическая постоянная данного материала, характеризующая его жесткость. Чем жестче материал, тем меньше он деформируется при данном напряжении.
Опытным путем установлено, что при простом растяжении или сжатии отношение поперечной деформации к продольной – величина постоянная для данного материала. Это отношение, взятое по абсолютному значению, называется коэффициентом поперечной деформации, или коэффициентом Пуассона;
|
(17.5)
Значения коэффициента Пуассона для различных материалов находятся в пределах от 0 до 0.5.
Минимальное значение коэффициент Пуассона имеет для пробки ( = 0); максимальное – для каучука ( 0.5). Для большинства металлов и сплавов значение коэффициента Пуассона колеблется в сравнительно узких пределах: от 0.23 до 0.35 (в среднем примерно 0.3).
Вопрос об определении изменения длины (удлинения или укорочения) бруса. Удлинение или укорочение равно:
(17.6)
Выражение (17.6) часто называют формулой Гука, а произведение Е∙А условно называют жесткостью сечения бруса при растяжении (сжатии).
Понятие жесткости бруса (участка бруса)определяется по формуле
(17.7)
Жесткость бруса численно равна силе, вызывающей удлинение (или укорочение) бруса, равное единице длины: 1 м или 1 см и т.п.
При расчетах в единицах СИ коэффициент жесткости выражают в ньютонах на метр (Н/м).
Величину, обратную коэффициенту жесткости, называют коэффициентом податливости:
(17.8)
Коэффициент податливости численно равен удлинению (укорочению) бруса, вызванному силой, равной единице силы: 1 H или 1 кН.
(17.9) или
(17.10)
20. Растяжение-сжатие прямого стержня. Формулы для напряжений и деформаций.
Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила N z. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие.
|
Поскольку поперечные сечения стержня, оставаясь плоскими и перпендикулярными к оси стержня, в процессе деформирования лишь поступательно перемещаются вдоль оси стержня (что приводит к одинаковому удлинению всех продольных волокон), то приходим к уравнению =const, из которого ввиду однозначности связи и (для линейно-упругого материала это—закон Гука: .) вытекает, что
Решая совместно уравнения получим, что или
Таким образом, при растяжении (сжатии) призматического стержня нормальные напряжения равномерно распределены по поперечному сечению, а касательные напряжения в сечениях отсутствуют, что является следствием гипотезы плоских сечений. Указанное, несмотря на, казалось бы, очевидность и простоту, является фундаментальным результатом, справедливым, строго говоря, лишь для призматического стержня. Однако в инженерной практике его используют и для приближенной оценки нормальных напряжений в стержнях переменного сечения. При этом, чтобы погрешность формулы была невелика, необходимо, чтобы площадь поперечного сечения стержня изменялась достаточно плавно вдоль его оси.
Условие прочности при растяжении (сжатии) призматического стержня для стержня из пластического материала (т. е. материала, одинаково работающего на растяжение и сжатие) будет иметь вид:
(1) |
где —допускаемое напряжение. Напряжение в условии (1) подставляется по модулю, так как знак в этом случае роли не играет. Для стержней из хрупких материалов, неодинаково сопротивляющихся растяжению и сжатию, знак напряжения имеет принципиальное значение, и условие прочности приходится формулировать отдельно для растяжения и сжатия
где и —напряжения растяжения и сжатия, а и — ответствующие им допускаемые напряжения.
Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией или удлинением, мало по сравнению с его первоначальной длиной . Тогда относительная продольная деформация будет равна
Учитывая, что согласно закону Гука для одноосного растяжения (сжатия)
,
где Е—; модуль продольной упругости материала стержня, а нормальные напряжения определяются по формуле — (в нашем случае Nz=P), для абсолютной деформации получаем
|
(2) |
Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF.
Рис.6. Модели продольной и поперечной деформаций
Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.
По аналогии с продольной деформацией изменение размеров поперечного сечения (на рис. 6 ) будем называть абсолютной поперечной деформацией, а — относительной поперечной деформацией. Относительные продольная и поперечная деформации, имеющие противоположные знаки, связаны между собой коэффициентом , являющимся константой материала и называемым коэффициентом поперечной деформации или коэффициентом Пуассона:
Как известно, для изотропного материала .
Формула (2) для удлинения стержня применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF =const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны:
(индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем
21.Испытание материалов на растяжение и сжатие. Диаграмма растяжения. Основные механические характеристики материала. Характеристики прочности и пластичности.
22. Особенности деформирования хрупких и пластичных материалов при сжатии. Диаграммы сжатия.
|
|
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!