Основные приемы анализа при картографическом методе исследования — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Основные приемы анализа при картографическом методе исследования

2017-06-25 930
Основные приемы анализа при картографическом методе исследования 0.00 из 5.00 0 оценок
Заказать работу

Картографический метод исследования основан на анализе карт как пространственно-временных моделей действительности. Для изучения явлений по их изображениям на картах используются различные приемы анализа, среди которых выделяют визуальные, картометрические, графические и математические способы.

Визуальный анализ - наиболее употребительный прием исследования по картам, основан на существе карт как образно-знаковых моделей, воспроизводящих в наглядной форме пространственные формы, отношения и структуру. Уже беглый взгляд на карту порождает при наличии опыта зрительный образ пространства изображенных явлений, например общее представление о местности по топографической карте. Внимательный просмотр карты позволяет далее (в зависимости от ее содержания) увидеть особенности форм и своеобразие пространственного рисунка явлений (например, округлые или лопастные очертания озер, древовидную или решетчатую конфигурацию гидрографической сети, пятнистость почв и т. п.) и дать содержательную интерпретацию этих форм; сопоставить величины показанных объектов (например, соотношение промышленных пунктов по стоимости валовой продукции); установить закономерности размещения (например, зональность растительного покрова), сходный характер явлений (например, использования земель) и места их резкой смены (например, на природных рубежах); обнаружить пространственные взаимосвязи (например, между рельефом, почвами и растительностью или между природными условиями и сельским расселением); уяснить характер пространственных структур (например, больших городов); оценить особенности динамических ситуаций (например, синоптической обстановки) и т. д. [5]

Такой анализ одинаково возможен для изучения планетарных закономерностей в размещении суши и океана, рельефа, климата, почв, растительности, животного мира, населения, хозяйства и т. д. или их региональных и даже местных особенностей. Визуальный анализ имеет в виду преимущественно качественную характеристику явлений, но часто сопровождается глазомерной оценкой длин, площадей, высот и т. п., а также их соотношений (при которой нельзя забывать об искажениях, вносимых картографическими проекциями при передаче больших пространств). Он всегда используется на первоначальной стадии исследования для общего ознакомления с изучаемыми явлениями и для выбора последующей методики работы.

Внешне простой и доступный каждому, визуальный анализ требует вместе с тем умения читать карту, понимания сути анализируемых явлений и, конечно, привлечения подходящих к делу карт. Это умственный труд, успех которого зависит от интенсивности и подготовки исполнителя.

Результатом визуального анализа может быть описание изучаемых явлений, для которого необходимы логичность и последовательность изложения, отбор и систематизация фактов, их анализ, обобщение и заключительные выводы. Заранее продуманная схема описания как бы образует алгоритм визуального анализа.

При общем развитии картографического метода исследования визуальный анализ расширяет область своего применения. Он распространяется на новые виды карт (например, металлогенические, служащие для прогноза полезных ископаемых) и особенно продуктивен в комплексном картографировании при совместном анализе сопряженных карт (§ 11.3), а также при сравнительном анализе вариантов карты в процессе ее автоматизированного изготовления. Весьма эффективно его использование для анализа статистических карт, переводящих таблицы статистических данных в наглядный, запоминающийся образ, облегчающий анализ явлений и их районирование.

Картометрические исследования заключаются в измерении и исчислении по картам количественных характеристик явлений с оценкой точности получаемых результатов. Определения координат, расстояний, длин, высот, площадей, объемов, углов и азимутов, уклонов и других топографических характеристик, теория и практические приемы этих определений издавна рассматриваются в особом разделе картографии - картометрии (см. § 1.5). Диапазон картометрических работ необычайно широк. Они могут сводиться к измерениям отдельных объектов (например, длины какой-либо реки) или быть массовыми (включать все реки), иметь локальный характер (например, ограничиваться небольшим районом) или распространяться на значительные пространства (например, ставить целью определение площадей земельных ресурсов по их видам для всей страны) или даже иметь глобальное значение.

Картометрия в традиционной разработке ограничивала свои интересы топографическими характеристиками, получаемыми по общегеографическим (топографическим) и морским навигационным картам. Между тем многие отрасли знания - науки о Земле и ее биосфере, экономическая и социальная география и другие - теперь нуждаются в получении по картам разнообразных абсолютных и относительных пространственных показателей, характеризующих формы явлений, их мощность, плотность и интенсивность, количественную структуру и градиенты, отношения соседства и доступности. Выбор показателей относится к задачам названных наук, но в основе определения показателей лежат картометрические измерения по соответствующим тематическим картам. Естественно, что разработка принципиальных положений, рациональных приемов и техники таких измерений, оценка их точности, обоснование выбора карт и т. д. входят в задачи картометрии в ее широком современном применении.

Большое распространение получили морфометрические расчеты формы и структуры объектов - общего характера их очертаний, вытянутости, извилистости, кривизны, расчленения и т. д., а также статистический анализ плотности, распределения и взаимосвязей явлений. Как особое направление при использовании картографического метода другими науками формируется «тематическая морфометрия, в задачи которой входит количественное исследование по тематическим картам форм и структур изображенных на них объектов» (См. Берлянт А. М. Образ пространства: карта и информация. М., 1986. С. 107.). В частности, такова геоморфологическая морфометрия, изучающая формы и структуры рельефа - размеры, особенности и группировку форм, горизонтальное и вертикальное расчленение и др.

Интенсивное внедрение автоматизированных приемов измерений по картам и привлечение ЭВМ для обработки их результатов необыкновенно повышают эффективность и точность картометрических исследований.

Графический анализ заключается в исследовании явлений при помощи графических построений, выполняемых по географическим картам. Такими построениями могут быть профили, разрезы, блок-диаграммы и другие образно-знаковые модели, производные от карт, а также различные графики-диаграммы, розы направлений или звездные диаграммы и т. п. Их часто применяют для наглядного представления о размещении явлений в иных плоскостях, чем горизонтальная, например в вертикальной плоскости посредством профилей и разрезов, в плоском изображении трехмерного пространства посредством блок-диаграмм, нередко сочетающих горизонтальные и вертикальные сечения, и т. п. Профили широко используют для изучения рельефа земной поверхности, геологического строения земной коры и т. д. Разрезы, показывающие вертикальную структуру компонентов географической оболочки, удобны для исследования их соотношений с рельефом земной поверхности, в частности с высотной поясностью. Совмещение профилей позволяет переходить к пространственному анализу, например для выявления поверхностей выравнивания (рис. 11.3).

Рис. 11.3. Наложение профилей рельефа, позволяющее наметить поверхности выравнивания (на высотах 75-76 м); ландшафт денудационной равнины

Заметим, что профили можно строить по любым картам с изолиниями и псевдоизолиниями, например по картам плотностей различных ресурсов- природных, трудовых и т. п. Блок-диаграммы, дающие перспективное изображение пространства, удобны для передачи связей между рельефом земной поверхности, геологическими структурами, почвенным покровом и т. д.

Графический анализ нередко служит для выяснения закономерностей пространственного размещения, например распределения (ориентирования каких-либо явлений (ветров, водотоков, тектонических разломов и т. п.) по основным азимутам. Рис. 11.4, а показывает реки Кольского полуострова и соответствующую звездную диаграмму (на которой длина лучей пропорциональна суммарным длинам водотоков по 12 направлениям), характеризующую в обобщенной форме основную ориентировку гидросети; рисунок 11.4,б построен аналогичным образом для линий неотектонических разломов. [6]

Автоматизация графических построений позволяет легко изменять их масштабы, ориентирование и другие параметры, сопоставлять и совмещать различные графики и в конечном счете неизмеримо ускоряет работу и повышает эффективность графического анализа.

Сама суть географических карт как математически определенных простр анственных моделей предопределяет эффективность математических приемов их -анализа для получения новых характеристик отображенных на картах явлений, для изучения их взаимосвязей и зависимостей, для построения математических моделей и других целей.[7]

Рис. 11. 4. Графический анализ взаимосвязи гидрографической сети Кольского п-ова с линиями неотектонических разломов: а - карта речной сети и диаграмма ориентирования рек по основным направлениям горизонта; б - карта неотектонических нарушений и соответствующая диаграмма; в - совмещение диаграмм: 1 - речной сети; 2 - неотектонических нарушений

Очень популярен математико-статистический анализ, привлекаемый к исследованию явлений, которые можно рассматривать на картах как однородные множества изменяющихся в пространстве случайных величин: высот, температур, посевных площадей, урожайности и т. п., называемых в математической статистике статистическими совокупностями. Среди многих задач, решаемых по картам при помощи статистического анализа, можно выделить три основные: 1) определение статистических характеристик какого-либо однородного явления, зависящего от многих факторов с неизвестной функциональной связью; 2) изучение пространственных и временных связей между явлениями; 3) оценка степени влияния отдельных факторов на изучаемое явление и выделение ведущих факторов. [8]

Для характеристики явления посредством какого-либо статистического показателя (средней арифметической, моды, медианы и т. п.) определяют количественные значения явления во многих точках карты и обрабатывают полученные данные, следуя правилам математической статистики по ячейкам избранной территориальной сетки (административного деления, природного районирования, регулярной сети и т. п.). Для производства выборки наиболее удобны карты с изолиниями (или псевдоизолиниями), позволяющими определять величину явлений в любой точке карты. Наиболее обоснована выборка по сетке равномерно расположенных точек. Количественные значения для статистической обработки можно получать и по картам с другими способами изображения: точками, ареалами, картограммами. Например, при точечном способе определяют интенсивность явлений выборочно по сетке контрольных площадок (часто в виде кружков), подсчитывая число точек внутри каждой контрольной площадки. Обычно анализ завершают построением картограммы или изолиний (псевдоизолиний), дающих наглядное представление о пространственных изменения показателя.

При исследовании по картам пространственных (и временных) зависимостей явлений - их формы и тесноты - прибегают к вычислению корреляционных показателей (коэффициентов корреляции, корреляционных отношений, показателей множественной корреляции и др.) и к выяснению (оценке) их надежности. Для этого надо иметь две выборки значений сопоставляемых явлений (например, осадков и урожайности), измеренных в одних и тех же точках одной или двух сравнимых карт; для множественной корреляции привлекают три выборки и более по одной или нескольким картам. Такие исследования при детализации расчетов по сетке территориального деления дают материал для составления карт взаимосвязей (корреляций), показывающих пространственные изменения величины и знака показателей корреляции; по ним возможно районирование территории по характеру связей - тесных и слабых, положительных и отрицательных, что важно для установления причинно-следственных отношений между исследуемыми явлениями. Картографо-етатистическое изучение взаимосвязей теперь широко используется не только в географических исследованиях, то также в других отраслях знания, в частности в геологии, метеорологии и медицине. Конкретное его применение будет показано в § 11.5.

Задачи по оценке влияния отдельных факторов и выделению ведущих факторов возникают при исследовании по-картам сложных комплексов явлений со множеством взаимосвязей. Примерами могут быть совокупность климатических показателей, или, что значительно шире, комплекс природных условий. Математическая статистика предоставляет для этого средство в виде факторного анализа, который позволяет сводить в одном показателе (аппроксимировать одним фактором) влияние комплекса родственных явлений и в конечном счете обобщать и оценивать влияние многих факторов при помощи весьма ограниченного числа синтетических показателей. Такой путь исследования дает объективное средство к составлению синтетических карт, например комфортности природных условий для обитания и работы людей. [9]

Другой распространенный прием математического анализа состоит в составлении по картам уравнений поверхностей, аппроксимирующих исследуемые явления - реальные (например, земной рельеф, поверхности погребенных пород определенного геологического возраста и т. п.) или абстрактные (годовой слой осадков, плотность населения, урожайность и др.), затем в построении поэтим уравнениям карт аппроксимирующих поверхностей и, наконец, в анализе этих поверхностей для интерпретации и объяснения исследуемых явлений.

функция искомой поверхности

(11.1)

где z - значение исследуемого явления в точке с координатами и и v, неизвестно, но ее можно выразить в той или иной приближенной форме, например в виде степенного ряда

(11.2)

с неизвестными коэффициентами А, В, С,... Для определения этих коэффициентов решается система уравнений (11.2), число которых равно или превышает число искомых коэффициентов (в последнем случае с привлечением способа наименьших квадратов). Значения z, и и v для составления отдельных уравнений берутся при исследовании непрерывных (континуальных) явлений непосредственно с карты, например в вершинах регулярной сетки, а для дискретных явлений определяются по сети территориальных ячеек как «плотности» явлений в этих ячейках, т. е. отношение численности объектов или суммарного выражения картографируемых признаков в каждой ячейке к ее площади (например, плотность населения, «плотность» запасов древесины в м3 на 1 га и т. п.). Очевидно многочлен первой степени, определяющий аппроксимирующую поверхность как плоскость, дает для сложной поверхности лишь самое грубое приближение. Аппроксимация уточняется с повышением степени многочлена. Несложные поверхности удовлетворительно описываются кубическими и даже квадратными уравнениями. Разложения можно выполнить также посредством тригонометрических рядов Фурье, или, что особенно удобно для практических целей, в виде суммы произведений ортогональных многочленов П. Л. Чебышева. [10]

Аппроксимирующие поверхности удобно применять для определения площадей и объемов, сопоставления поверхностей, например при изучении корреляции явлений и т. п.

Для математического анализа заимствуются также положения из других математических дисциплин. В частности, приемы математической теории информации привлекаются для оценки по картам пространственной однородности (или неоднородности) явлений, пространственного соответствия различных явлений и т. д.

Проведенный выше раздельный обзор основных приемов анализа, используемых в картографическом методе исследования, позволяет яснее видеть пути его применения. Но в практике обычно совместное применение различных приемов. Например, предварительный визуальный анализ полезен для выбора рациональной методики картометри-ческих работ, результаты которых могут быть далее обобщены в графических построениях, в частности в виде гипсографических кривых, и т. п. Комплексирование различных приемов не только обогащает методику работы, но и расширяет возможности картографического метода.

Некоторые приемы анализа (визуальный, картометрический, графический) имеют длительную историю, но математические приемы, требующие сплошь и рядом обширных вычислений, оказались реальными лишь после внедрения электронно-вычислительных машин в практику картографического метода.[11]

 

Глава 2.Картографическое обеспечение глобальных проблем земельных ресурсов на примере Московской Области
2.1. ГИС, применяемые в сфере учета, оборота и оценки земельных ресурсов

С каждым годом информационные потребности человека затрагивают все новые сферы его деятельности. Практически во всех современных отраслях знаний накоплен богатый опыт использования информации, получаемой из многочисленных источников.

Со временем значительная часть информации быстро меняется, и поэтому все труднее становится ее использование в традиционном бумажном виде для принятия управленческих решений, в том числе и в области Государственного земельного кадастра и управления земельными ресурсами. Быстроту получения информации и ее актуальность может гарантировать только автоматизированная система. Поэтому возникла необходимость создания автоматизировано системы, имеющей большое количество графических и тематических баз данных и соединенной с модельными расчетными функциями для преобразования данных в пространственную информацию и последующего принятия управленческих решений.[12]

К таким системам можно отнести и многофункциональную информационную систему, предназначенную для сбора, обработки, моделирования пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Таким образом, основная задача ГИС – формирование знаний о земном шаре, его отдельных территориях, а также обеспечение пространственными данными различных пользователей. Поэтому предметом ГИС является исследование закономерностей информационного обеспечения пользователей, включая принципы построения системы сбора, накопления, обработки, моделирования и анализа пространственных данных, их отображения и использования, доведения до пользователей, формирования технических программных средств, разработки технологии изготовления электронных и цифровых карт, формирования соответствующих организационных структур.

ГИС используют практически во всех отраслях и областях знаний: в навигации, на транспорте и в строительстве, в геологии, географии, военном деле, топографии, экономике, экологии, тематической картографии и др. Возможность проанализировать географическое расположение большого числа объектов недвижимого имущества, их количественных и качественных характеристик на основе картографического материала позволяет управляющим структурам принимать обоснованные решения по управлению территорией. В картографических данных также нуждаются специалисты, оценивающие и прогнозирующие состояние любой области человеческой деятельности, например рынков сбыта продукции, загрязнений территории и т.п.

ГИС – цифровая модель реального пространственного объекта местности в векторной, растровой и других формах.

Функции ГИС заключаются в сборе, системной обработке, моделировании и анализе пространственных данных, их отображения и использовании при подготовке и решении управленческих решений.

ГИС используют для решения разнообразных задач, основные из которых можно сгруппировать следующим образом:

· поиск и рациональное использование природных ресурсов;

· территориальное и отраслевое планирование и управление размещением промышленности, транспорта, сельского хозяйства, энергетики, финансов;

· обеспечение комплексных и отраслевых кадастров;

· мониторинг экологических ситуаций и опасных природных явлений, оценка техногенных воздействий на среду и их последствий, обеспечение экологической безопасности страны и регионов, экологическая экспертиза;

· контроль условий жизни населения, здравоохранение и образование, социальное обслуживание, обеспеченность работой и др.;

· обеспечение деятельности органов законодательной и исполнительной власти, политических партий и движений, средств массовой информации;

· обеспечение деятельности правоохранительных органов и силовых структур;

· научные исследования и образование;

· картографирование (комплексное и отраслевое): создание тематических карт и атласов, обновление карт, оперативное картографирование.

ГИС должна иметь разветвленную структуру, аппаратные средства и программное обеспечение, позволяющее обрабатывать и передавать большие объемы информации.

Для такой системы характерны непрерывное усложнение, развитие технологических процессов, увеличение числа источников информации.

Функционирование ГИС должно быть основано на применении следующих принципов:

1. Соответствие структуры ГИС, ее тактико-технических характеристик предъявляемым к ней требованиям пользователей.

2. Применение системного подхода при создании и использовании ГИС.

3. Комплексность системы.

4. Эффективность системы.

5. Полнота информационного обеспечения управлением развития территории в процессе эксплуатации системы.

6. Открытость системы, обеспечивающая легкость модификаций и переналаживания системы разработчиками и пользователями с целью е поддержания на современном уровне.

В литературных источниках встречаются различные модели, определяющие составные части ГИС. С точки зрения информатики любую информационную систему можно представить как четырехкомпонентную модель, которая включает:

· аппаратное обеспечение (весь комплекс технических средств – процессоры, периферия и др.);

· программное обеспечение (методы и средства, обеспечивающие функции хранения, анализа и предоставления данных);

· данные (качественные и количественные характеристики исследуемого объекта или явления);

· пользователей системы.

Более устойчива модель ГИС, в основу которой положен функциональный принцип. Основные компоненты (подсистемы) такой системы:

· подсистема ввода и преобразования данных;

· подсистема обработки и анализа данных;

· подсистема хранения данных;

· баз данных (БД);

· система управления базой данных (СУБД);

· подсистема вывода (визуализации) данных;

· подсистема предоставления информации;

· пользовательский интерфейс (рис. 1)

Рис. 1. Структура географической геоинформационной системы

Каждая из подсистем выполняет определенные функции, и отсутствие хотя бы одной из них свидетельствует о неполноценности ГИС-системы.

Ядром каждой информационной системы (ГИС в том числе) является база данных под которой понимают поименованную совокупность данных, отображающую состояние объекта, его свойства и взаимоотношения с другими объектами, а также комплекс технических и программных средств для ведения этих баз данных.

Формирование структуры ГИС начинается с формирования баз данных, основанных на территориальной (географической) привязке данных, поскольку все ГИС-системы имеют дело только с пространственно-координированными данными. Территориальная упорядоченность сведений важна не только с точки зрения унификации их сбора, но и установления оптимального соответствия размерам исследуемых систем. Наряду с данными, приуроченными к точкам и линиям поточечно фиксируемыми координатами, иногда их привязывают к границам административно-территориальных образований или природных контуров, например гидрографической сети, элементам рельефа местности и т.д.

База данных ГИС, включает графические и атрибутивные данные, которые могут храниться вместе или отдельно.

Важная составная часть ГИС – базы данных, в которых содержится тематическая информация. В связи со стремительно уменьшающейся стоимостью запоминающих устройств хранение информации в ЭВМ стоит дешевле, чем на бумажных носителях. Впервые понятие «базы данных» появилось в начале 60-х годов. До этого времени данные представлялись в виде простых последовательных файлов на магнитной ленте и зависели от программ обработки. Если менялись организация данных или тип запоминающего устройства, программисту приходилось заново переписывать программу, существовали многочисленные версии одного и того же файла. Это приводило к очень высокой степени дублирования данных, их избыточности.

В базах данных совокупность взаимосвязанных хранящихся вместе данных организована так, что их использование оптимально для оного или нескольких приложений; данные независимы от программ, использующих эти данные; для добавления новых или модификации существующих данных, а также для поиска данных в БД применяют общий управляемый способ. Данные структурируются таким образом, чтобы была обеспечена возможность дальнейшего наращивания приложений.

Основная идея организации структуры базы данных заключается в том, чтобы максимально нормализовать их, т.е. разбить на смысловые и функциональные группы.

При организации баз данных различают:

· тип данных (картографические и атрибутивные (описательные);

· структуру данных (топология и слои);

· модель данных (иерархические, сетевые, реляционные, гибридные);

· форму предоставления пространственных данных (векторную, растровую, трехмерную).

Существуют два главных типа данных ГИС: картографические и атрибутивные (описательные).

Картографические данные – это картографическая информация, хранящаяся в цифровой форме. Данные формируются по географическим объектам, описываемым на карте. Большую часть этих объектов можно классифицировать на точки, линии и полигоны.

Точка представляет собой объект, для которого требуется географическое местоположение (например, широта, долгота). Примером характеристик точек могут служить места расположения колодцев, реперов и т.д.

Линия состоит из серии связанных друг с другом точек и имеет только длину. Примером характеристики линейного объекта могут служить дорога, трубопровод и т.д.

Полигон – это площадь, ограниченная замкнутой линией. Полигон расположен на плоскости и имеет два размера: длину и ширину. В качестве образца характеристики полигона можно привести участки с определенным типом почвы, здания, озера, леса, неиспользуемые земельные участки и т.д.

К данным, используемым в ГИС, относится описательная информация, которая храниться в базе данных об объектах (точка, линия, полигон), расположенных на карте. Описательную информацию называют атрибутом. Атрибуты для описания сельскохозяйственного угодья, можно представить в следующем виде:

АТРИБУТ ЗНАЧЕНИЕ
Код объекта по классификатору 1 256
Сенокос Суходольный
  Заболоченный
  Заливной
Культурно-техническое состояние Чистый
  Закочкаренный
  Закустаренный
Площадь, га  
Периметр, га 2 133

Формально все объекты представляют с помощью их описания набором характеристик, а их хранение – в соответствующих графических и параметрических базах данных. Выделяют три группы признаков (характеристик) описание объектов: идентификационные, классификационные, выходные.

Идентификационные характеристики служат для однозначного определения местоположения объекта на карте и его опознания. К ним относятся название географического объекта, координаты, род объекта и т.д.

Классификационные характеристики служат для количественного и качественного описания объекта, и используют их для получения производственных характеристик путем математической обработки (качественный и количественный анализ, моделирование и т.д.).

Выходные характеристики содержат информацию об источниках и датах получения соответствующих данных по каждой из характеристик для любого объекта. Назначением данной группы признаков является обеспечением возможности определения достоверной поступающей информации.[13]

При выполнении пространственных запросов атрибутика помогает более точно идентифицировать объект. Предпочтение в ГИС отдают двум формам запроса к атрибутике: языку запросов SQL (Structured Query Language) и шаблону.

Идентификаторы предназначены для осуществления связи картографических и атрибутивных данных, так как в большинстве ГИС эти характеристики объектов обрабатываются раздельно. Пользователь может указать на объект, например курсором, и система определит его идентификатор, по которому найдет относящиеся к объекту одну или несколько бах данных и, наоборот, по информации в базе определит графический объект.

Пространственные данные в современных ГИС представлены в двух основных формах: векторной и растровой.

Векторная модель данных основывается на представлении карты в виде точек, линий и плоских замкнутых фигур.

Растровая модель данных основывается на представлении карты с помощью регулярной сетки одинаковых по форме и площади элементов.

Векторные модели используют в ГИС для предоставления информации, которую в дальнейшем нужно обрабатывать (обновлять, корректировать, удалять). Растровые модели используют в качестве подложки для дальнейшей векторизации картографического изображения.

Базы данных делят на иерархические, сетевые и реляционные.

Иерархические базы данных устанавливают строгую подчиненность между записями и состоит из упорядоченного набора деревьев (из упорядоченного набора нескольких экземпляров одного типа дерева). Тип дерева состоит из одного «корневого» типа записи и упорядоченного набора из нуля или более типов поддеревьев (каждое из которых является некоторым типом дерева).

Сетевые базы данных используют в том случае, если структура данных сложнее, чем обычная иерархия, т.е. простота структуры иерархической базы данных становится ее недостатком. Организация сетевых и иерархических баз данных должна быть жесткая. Наборы отношений и структуру записей необходимо задавать заранее.

Общие правила определения целостности баз данных отсутствуют. В некоторых системах поддерживаются ограничения уникальности значений некоторых полей, но в основном все возлагается на прикладную программу.

Для эффективного выполнения задач создания методов ввода, обновления, обеспечения файлового хранения и контроля за доступом пользователя к файлам вывода требуется создать гибкую и хорошо организованную ГИС.

ГИС- технологии в навигации

В рамках многолетней Федеральной целевой программы “Мировой океан” создается Единая система информации ЕСИМО. Предусматривается создание единой нормативно-методической, организационной, метрологической и технологической основы ведения информационных ресурсов по Мировому океану в Российской Федерации, интеграция ведомственных информационных систем и центров данных, обеспечение пользователей данными и информационной продукцией о состоянии и загрязнении океанов, морей России и прибрежных территорий. Система ЕСИМО базируется на современных информационных технологиях (СУБД, ГИС, телекоммуникации и др.) и использовании распределенных баз данных. Информацию, такую как маршруты научно-исследовательских судов, размещение гидролого-гидрохимических станций, буев и измерительных комплексов, пространственное распределение гидрофизических параметров на поверхности и в глубинах морей и океанов и т.п. удобно представлять в виде карт, что предопределило широкое использование в системе ГИС технологий. С их помощью в системе создаются такие, например, информационные продукты как карты разливов рек и водоемов, зон затопления территорий, обзорные карты ледовой обстановки по морям, карты гидрометеорологических условий, схем течений, характеристик приливных и суммарных течений на поверхности и в глубинах, концентрации гидрохимических, биогенных и микробиологических соединений, содержания загрязняющих веществ в воде и другие. Структуру ЕСИМО можно представить в виде набора информационно-технологических модулей, в каждом из них применяются специализированные проблемно-ориентированные ГИС- и СУБД-приложения. Говоря о ГИС, следует отметить, что с середины 90-х годов геоинформационные системы приобрели статус серьезного стратегического резерва в экономике развитых стран. Эффективность такого подхода подчеркивается, например, в Указе президента США "О создании национальной инфраструктуры данных с пространственной привязкой", опубликованном в апреле 1994 г.: "В конечном счете, именно географическая информация становится критичным компонентом в задачах содействия экономическому развитию, умелого природопользования и защиты среды обитания". Современные ГИС представляют собой новый тип интегрированных информационных систем, которые, с одной стороны, включают традиционные методы обработки данных, а с другой обладают спецификой в организации, обработке и отображении пространственно-временных данных. На практике, это определяет использование ГИС в качестве многоцелевых, многоаспектных систем. Вместе с тем, правильнее говорить не о ГИС в “чистом” виде, а о ГИС-технологиях, интегрирующих работу СУБД, мощного аналитико-моделирующего аппарата обработки данных и собственных возможностей проведения пространственного анализа для получения новой информации.

Пожалуй, наиболее показательным примером применения ГИС-технологий в ЕСИМО могут служить электронные справочники по морской природной среде. В современном понимании, режимно-справочное пособие в электронном виде (ЭСП) должно включать в себя не только информационную базу (исходные, расчетные, модельные и справочные данные), но и расчетно-модельный комплекс программ получения режимных характеристик и результатов гидродинамического и вероятностного моделирования. Основа ЭСП - это программно-технологическая среда для хранения, управления и обработки данных, формирования выходной продукции в виде картографического, текстового, табличного и графического материалов.[14]

В ЕСИМО реализуется два варианта ЭСП с применением пакетов MapObjects и ArcView с дополнительным модулем Spatial Analyst. ЭСП на основе MapObjects (виды рабочих панелей показаны на рис. 1) реализован в распределенной среде и состоит из программы-оболочки, базы данных, модуля поисковой функции, расчетно-модельного блока, средств визуализации пространственной информации на картографической основе, средств визуализации в отдельных окнах текстовых, табличных и графических файлов, средств подготовки и отображения отдельных страниц в отчетной форме и модуля Справки. При реализации применена архитектура клиент-сервер. Сервер - СУБД Oracle и программная поддержка обеспечения ЭСП необходимыми данными. Клиент - программная оболочка в среде Delphi с инструментами MapObjects для работы с картографическими материалами, которая управляет работой функциональных блоков статистической обработки данных, визуализации и сохранения результатов расчетов. ЭСП на основе ArcView с модулем Spatial Analyst выполнено в виде ГИС-приложения и позволяет объединять на функциональном уровне базы данных, модели и методы расчетов, стандарты и руководства, системные и прикладные программы в виде интегрированной информационной среды для получения комплексной информации. Продукт состоит из програм


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.081 с.