Полное внутреннее отражение в природе и технике — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Полное внутреннее отражение в природе и технике

2017-06-05 1009
Полное внутреннее отражение в природе и технике 0.00 из 5.00 0 оценок
Заказать работу

Фата-моргана, эффекты миража, например иллюзия мокрой дороги при летней жаре. Здесь отражения возникают из-за полного отражения между слоями воздуха с разной температурой.

Яркий блеск многих природных кристаллов, а в особенности — огранённых драгоценных и полудрагоценных камней объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.

Блеск алмазов, выделяющий их из прочих драгоценных камней, также определяется этим феноменом. Из-за высокого коэффициента преломления (n ≈ 2) алмаза оказывается большим и число внутренних отражений, которые претерпевает луч света с меньшими потерями энергии, по сравнению со стеклом и другими материалами с меньшим показателем преломления.

Полное внутреннее отражение можно наблюдать, если смотреть из-под воды на поверхность: при определенных углах на границе раздела наблюдается не внешняя часть (то, что в воздухе), а видно зеркальное отражение объектов, которые находятся в воде.

Светоделительный куб

Непосредственно за первой граничной поверхностью, то есть на расстоянии максимум, равной длине волны света, вторая граничная поверхность имеет тот же коэффициент преломления n1. Электромагнитная волна света проникает через полосу с коэффициентом преломления n2 и попадает во вторую граничную поверхность с коэффициентом преломления n1, но с меньшим значением энергии. Наблюдается раздвоение луча света, часть которого проникла в зону с коэффициентом преломления n2. В конечном результате луч раздваивается: часть распространяется дальше в первоначальном направлении, в то время как другая часть отражается. Потеря интенсивности в среде n2 проходит экспоненциально по формуле:

Световод

Эффект полного внутреннего отражения используется в оптических волокнах. Осевая часть волокна (сердцевина) формируется из стекла с более высоким показателем преломления, чем окружающая оболочка. Такие световоды используются для построения волоконно-оптических кабелей

Когерентные волны - волны, характеризующиеся одинаковой частотой и постоянством разности фаз в заданной точке пространства.

Когерентность волн является необходимым условием получения устойчивой интерференционной картины.

Интерференция света - оптическое явление:

- возникающее при сложении двух или нескольких когерентных световых волн, линейно поляризованных в одной плоскости;

- представляющее собой устойчивую во времени картину усиления или ослабления результирующих световых колебаний в различных точках пространства.

Условия наблюдения интерференции

 

Рассмотрим несколько характерных случаев:

 

1. Ортогональность поляризаций волн.

 

При этом и . Интерференционные полосы отсутствуют, а контраст равен 0. Далее, без потери общности, можно положить, что поляризации волн одинаковы.

 

2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции .

 

3. В случае значение функции и интерференционная картина не наблюдается. Контраст полос, как и в случае ортогональных поляризаций, равен 0

 

4. В случае контраст полос существенным образом зависит от разности частот и времени экспозиции.

Условия максимумов Условия минимумов

Разность хода Dd = k·l, где k = 0, 1, 2... Разность хода Dd = (2k+1)·l/2

Разность фаз Df = 2·k·p Разность фаз Df = (2k+1)·p

Колебания в точке наложения волн имеют одинаковую фазу. /\Колебания в точке наложения волн имеют противоположную фазу.

Наблюдается усиление колебаний Наблюдается ослабление колебаний.

Просветление оптики, то есть создание покрытий на поверхности оптических деталей, в первую очередь линз, является одним из простейших и наиболее распространенных применений интерференции света. На поверхности линзы создаётся специальное покрытие.

 

В таком случае волны, отраженные от границ раздела пленка-воздух и пленка-стекло будут складываться в противофазе и “гасить” друг друга. Для того чтобы это гашение было наиболее эффективным, необходимо дополнительно постараться уравнять амплитуды обеих отраженных волн. Это достигается подбором материала пленки.

 

На практике удачным подбором материала пленки удается снизить коэффициент отражения поверхности в 20-100 раз по сравнению с исходной поверхностью стекла - для когерентного излучения данной длины волны.

 

В случае когда падающий на поверхность свет не монохроматический, т.е. состоящий из света разных цветов (фотографические, микроскопические устройства), из вышеприведенной формулы очевидно, что обеспечить идеальное просветление для всех спектральных компонент невозможно. Поэтому просветление обычных бытовых фотообъективов и т.п. устройств выполняется в расчете на наилучшее просветление в области максимальной спектральной чувствительности глаза.

 

Кроме того, существует техника создания многослойных просветляющих покрытий со слоями различной толщины, эффективно осуществляющих гашение отраженного света в достаточно широкой спектральной области. Принцип действия таких слоев тот же что и описанный выше - взаимное интерференционное гашение двух или нескольких волн, отраженных от границ раздела многослойного покрытия.

Голография

Ещё одним важным применением интерференции является голография. При голография представляет собой "трёхмерную фотографию". Смотря на голографию под разными углами вы сможете рассмотреть изображённый на ней предмет с разных сторон. Подробнее о голографии вы сможете узнать в 11 классе на факультативном курсе "Современная оптика".

С помощью явления интерференции проверяют качество деталей, определяют показатель преломления различных сред и т.д.

 

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

в разложении волн по их частотному спектру;

в преобразовании поляризации волн;

в изменении фазовой структуры волн.

Когда световая волна встречает на своем пути резкие неоднородности (например, край непрозрачного объекта, щель в непрозрачном экране и т.д.), то она в своем поведении перестает подчиняться законам геометрической оптики. Такие эффекты называются дифракционными эффектами, или просто дифракцией. Лазерный источник формирует на экране наблюдения световое пятно. Поместим на пути светового пучка щель. На экране теперь наблюдается система световых пятен. Говорят, свет дифрагирует на щели, и на экране наблюдаются дифракционные спектры (максимумы), разделенные темными промежутками (минимумами). При увеличении ширины щели дифракционная картина уменьшается. Ее максимумы и минимумы сближаются и смещаются к центральному максимуму. При уменьшении ширины щели дифракционная картина увеличивается. Максимумы и минимумы разбегаются. Центральный максимум занимает практически всю видимую часть дифракционной картины.

 

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

 

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

 

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

 

где

— период решётки,

— угол максимума данного цвета,

— порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки,

— длина волны.

 

Если же свет падает на решётку под углом, то

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.

ДИФРА́КЦИЯ РЕНТГЕ́НОВСКИХ ЛУЧЕ́Й явление, возникающее при упругом рассеянии рентгеновского излучения в кристаллах, аморфных телах, жидкостях или газах и состоящее в появлении отклонённых (дифрагированных) лучей, распространяющихся под определёнными углами к первичному пучку. Д. р. л. обусловлена пространств. когерентностью между вторичными волнами, возникшими при рассеянии первичного излучения на эл-нах разл. атомов. В нек-рых направлениях, определяемых соотношением между длиной волны излучения l и межатомными расстояниями в в-ве, вторичные волны складываются, находясь в одинаковой фазе, в результате чего создаётся интенсивный дифракц. луч. Дифракц. картина может быть зафиксирована на фотоплёнке; её вид зависит от структуры объекта и эксперим. метода. Напр., рентгенограммы от монокристаллов (лауэграммы) образованы закономерно расположенными пятнами (рефлексами), от поликристаллов (дебаеграммы) — системой концентрич. окружностей, от аморфных тел, жидкостей и газов — совокупностью диффузионных ореолов вокруг центр. пятна. Д. р. л. впервые была экспериментально обнаружена на кристаллах нем. физиками М. Лауэ, В. Фридрихом и П. Книппингом в 1912 и явилась доказательством волновой природы рентгеновских лучей.

Наиболее чётко выражена Д. р. л. на кристаллах. Кристалл явл. естеств. трёхмерной дифракц. решёткой для рентгеновского излучения, т. к. расстояние между рассеивающими центрами (атомами) в нём одного порядка с l рентгеновского излучения (=1? =10-8 см). Д. р. л. на кристаллах можно рассматривать как избирательное (по l) отражение рентгеновских лучей от систем ат. плоскостей кристаллической решётки (см. БРЭГГА — ВУЛЬФА УСЛОВИЕ). Направление дифракц. максимума удовлетворяет условиям Лауэ:

 

Здесь а, b, с — периоды крист. решётки по трём её осям; a0, b0, g0 — углы, образуемые падающим, а a, b, g — рассеянным лучом с осями кристалла; h, k, l — целые числа (Миллера индексы).

Интенсивность дифрагиров. луча определяется атомными факторами, к-рые зависят от электронной плотности атомов, расположением атомов в элем. ячейке (структурным фактором), а также интенсивностью тепловых колебаний атомов крист. решётки. На неё влияют также размеры и форма объекта, степень совершенства кристалла и др. хар-ки. Зависимость величины и пространств. распределения интенсивности рассеянного рентгеновского излучения от структуры и др. хар-к объекта легла в основу рентгеновского структурного анализа и рентгенографии материалов.

Д. р. л. на кристаллах даёт возможность определять длину волны рентгеновского излучения (см. РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ).

Д. р. л, на аморфных твёрдых телах, жидкостях и газах позволяет оценивать средние расстояния между молекулами или расстояния между атомами в молекуле и определять распределение плотности в-ва.

Дифрагиров. пучки составляют часть всего рассеянного излучения. Из-за нарушений периодичности строения кристаллов часть излучения рассеивается некогерентно и образует изотропный фон. Кроме того, наблюдается комптоновское рассеяние с изменением l (см. КОМПТОНА ЭФФЕКТ).

 

Или

 

ДИФРА́КЦИЯ РЕНТГЕ́НОВСКИХ ЛУЧЕ́Й, рассеяние рентгеновских лучей кристаллическими объектами, при котором в определенных направлениях появляются дифрагированные пучки — результат интерференции вторичного рентгеновского излучения, возникающего при взаимодействии первичного излучения с электронными оболочками атомов. Направление и интенсивность дифрагированных пучков связаны с атомной структурой объекта

Применение дифракции

калибровка оптических приборов

 

фазовый анализ (в том числе всякие приложения типа газоконтроля, экологического контроля и проч)

 

дефектоскопия

Голография (др.-греч. ὅλος — полный + γραφή — пишу) — набор технологий для точной записи, воспроизведения и переформирования волновых полей.

Данный метод был предложен в 1947 году[1] Дэннисом Габором, он же ввёл термин голограмма[2] и получил «за изобретение и развитие голографического принципа» Нобелевскую премию по физике в 1971 году[3].

Физические принципы

Рассеянные объектом волны характеризуются амплитудой и фазой. Регистрация амплитуды волн не представляет затруднений; обычная фотографическая пленка регистрирует амплитуду, преобразуя ее значения в соответствующее почернение фотографической эмульсии. Фазовые соотношения становятся доступными для регистрации с помощью интерференции, преобразующей фазовые соотношения в соответствующие амплитудные. Интерференция возникает, когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В этой же области размещают фотопластинку (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи.

Голографические фотополимерные материалы

В последние годы интенсивно разрабатываются регистрирующие среды на базе голографических фотополимерных материалов, представляющих собой многокомпонентную смесь органических веществ, нанесенную в виде аморфной пленки толщиной 10-150 мкм на стеклянную или пленочную подложку. Фотополимерные пленки менее дорогостоящие чем кристаллы ниобата лития, менее громоздки и имеют по сути большую величину изменения коэффициента преломления, что приводит к большим значениям дифракционной эффективности и большей яркости голограммы. Однако, с другой стороны ниобат лития, из-за его толщин, способен сохранять большие объемы информации, чем фотополимерные пленки толщины которых ограничены.

Поскольку фотополимеры не обладают зернистым строением, то разрешающая способность такого материала достаточна для сверхплотной записи информации. Чувствительность фотополимера сравнима с чувствительностью фотохромных кристаллов. Записанные голограммы являются фазовыми, что позволяет получать высокую дифракционную эффективность. Такие материалы позволяют хранить информацию длительное время, устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками.

Голографическая память — это потенциально-возможная замена технологии повышенной емкости данных, сейчас наиболее используемой в магнитных и оптических носителях. В них (а также на flash-носителях), данные записываются на один-два слоя при помощи отдельных питов. В голографической памяти, данные можно записывать по всему объему памяти при помощи различных углов наклона лазера.

Кроме того, в отличие от обычной магнитной или оптической памяти, где одновременно может идти запись только одного пита данных, голографическая память позволяет использовать миллионы одновременных потоков записи, увеличивая скорость записи и чтения в соответствующее число раз.

Направления электрического E и магнитного H полей в пространственной бегущей электромагнитной волне лежат в плоскости, перпендикулярной направлению движения волны.

Направления полей соответствуют «правилу буравчика»: при повороте от вектора Е, расположенного вертикально (ось Z) к вектору H, лежащему в горизонтальной плоскости (ось Y) продвижение буравчика совпадает с направлением распространения волны (вдоль оси X)

 

 

На рис электрическая составляющая поля во все моменты остается в вертикальной плоскости. Пространственная ориентация этой составляющей служит признаком свойства волн, называемого поляризацией. Волна, показанная в данном примере, называется вертикально поляризованной. В зависимости от способа получения волн, поляризация может быть также горизонтальной или наклонной. Если в процессе распространения волн поляризация не изменяется, то она называется линейной.

Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется и распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усиливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 10.4 они обозначены точками), в преломленном - колебания, параллельные плоскости падения (изображены стрелками).

Двойно́е лучепреломле́ние — эффект расщепления в анизотропных средах луча света на две составляющие. Впервые обнаружен на кристалле исландского шпата. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o — ordinary), второй же отклоняется в сторону, нарушая обычный закон преломления света, и называется необыкновенным (e — extraordinary).

Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где — интенсивность падающего на поляризатор света, — интенсивность света, выходящего из поляризатора, — коэффициент прозрачности поляризатора.

Установлен Э. Л. Малюсом в 1810 году.

В релятивистской форме

где и — циклические частоты линейно поляризованных волн, падающей на поляризатор и вышедшей из него.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

у красного цвета максимальная скорость в среде и минимальная степень преломления,

у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Поглощение электромагнитного излучения — это процесс поглощения одного или нескольких фотонов другой частицей, в результате чего энергия фотонов переходит в энергию этой частицы. В макромире это взаимодействие выглядит как переход электромагнитной энергии в другие виды энергии, например, в тепловую энергию.

Рассеяние света — рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока.

Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где — интенсивность входящего пучка, — толщина слоя вещества, через которое проходит свет, — показатель поглощения (не путать с безразмерным показателем поглощения , который связан с формулой , где — длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

 

 

Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением.

Все тела при температуре Т > 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 оС.

Тепловое излучение характеризуют следующими величинами:

W - энергия излучения (в Дж);

(Дж/с = Вт) - световой поток или мощность излучения - это энергия,

излучаемая (или поглощаемая) за единицу времени;

(Дж/(с.м2) - энергетическая светимость ( DS - площадь излучающей

поверхности). Энергетическая светимость R - по смыслу –

это энергия, излучаемая единичной площадью за единицу

времени по всем длинам волн l от 0 до .

В качестве научной абстракции при изучении теплового

излучения используют понятие - абсолютно черное тело

(АЧТ) -это тело, которое поглощает все падающие на него

лучи. Для АЧТ коэффициент поглощения а = 1. Реальной моделью АЧТ может служить замкнутая полость с небольшим отверстием.

Тело, у которого коэффициент поглощения электро-

магнитного излучения меньше единицы и не зависит от

длины волны, называют серым телом.

Закон излучения Кирхгофа-Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

Зависимость излучательной способности АЧТ r от длины

волны l показана на рис.2. Эти кривые математически описываются формулой, которая называется формулой Планка:

 

 
 

 


Здесь l - длина волны излучения, с - скорость света в вакууме, к - постоянная Больцмана, Т - абсолютная температура, h - постоянная Планка.

Из формулы Планка можно вывести законы излучения

АЧТ, которые ранее были получены экспериментально:

1) закон Стефана - Больцмана:

 

который формулируется так: энергетическая светимость АЧТ прямо пропорциональна четвертой степени абсолютной температуры.

2). закон смещения Вина:

 

который формулируется так: длина волны, на которую приходится

максимум излучения обратно пропорциональна абсолютной

температуре.

Здесь: s = 5,67.10-8 Вт/(м24) - постоянная Стефана - Больцмана.

в = 2,9.10-3 м.К - постоянная Вина.

Для серого тела закон Стефана-Больцмана можно записать как: R = a·s Т 4,

где a = const и называется коэффициентом черноты или коэффициентом серости.

 

 

ПЛАНКА ЗАКОН ИЗЛУЧЕНИЯ (формула Планка)- даёт спектральную зависимость (зависимость от частоты v или длины волны= c/v) объёмной плотности излучения (энергии излучения в единице объёма) и пропорциональной ей испускат. способности абсолютно чёрного тела= сu/4 (энергии излучения, испускаемой единицей его поверхности за единицу времени). Ф-ции uv,T и (или и), отнесённые к ед. интервала частот (или длин волн), являются универсальными ф-циями от v (или) и Т, не зависящими от природы вещества, с к-рым излучение находится в равновесии.

П. з. и. выражается ф-лой

 

Из формулы Планка можно вывести законы излучения

АЧТ, которые ранее были получены экспериментально:

Рис.2.Распределение

 

 

излучательной

способностиАЧТ

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Первый закон фотоэффекта. Монохроматическое излучение, освещающее катод, состоит из потока фотонов с энергией e = h·n. При взаимодействии излучения с веществом атом, находящийся в поверхностном слое, поглощает фотон целиком. При этом он может потратить его на испускание электрона. При облучении металла светом происходит громадное число таких элементарных актов фотоэффекта. Энергия светового пучка складывается из энергий отдельных фотонов. Световой поток пропорционален числу фотонов: Ф ~ h·n·nф. С увеличением числа фотонов (светового потока) растет число электронов nэ, покинувших металл и участвующих в создании фототока. Сила тока насыщения пропорциональна числу электронов I ~ nэ, следовательно, ток насыщения пропорционален световому потоку: Iн ~ Ф.

Второй закон фотоэффекта. При поглощении электроном фотона часть энергии фотона тратится на совершение работы выхода Авых, а остальная часть составляет кинетическую энергию фотоэлектрона. На основе закона сохранения энергии можно записать уравнение для фотоэффекта (уравнение Эйнштейна):

 

h·n = Авых+ m·V2/2 (7)

 

Из формулы 7 видно, что кинетическая энергия фотоэлектронов прямо пропорциональна частоте света.

Третий закон фотоэффекта При уменьшении энергии фотона уменьшается кинетическая энергия фотоэлектронов. При некотором значении частоты света (n0) энергии фотона хватает только на работу выхода. Соотношение 7 примет вид: h·n0 = Авых. Если же h·n0 < Авых, то электрон не может покинуть металл. Фотоэффект не происходит. Эта частота n0 и будет красной границей фотоэффекта.

Экспериментальную проверку уравнения Эйнштейна проводили Банселен на суспензиях гуммигута, Оден на золях серы и наиболее обстоятельно Эйрих на суспензиях мельчайших стеклянных шариков, шарообразных спор грибов и дрожжевых клеток. Отклонения наблюдались, когда частицы не были шарообразны, концентрация дисперсной фазы в суспензии была значительной и между частицами существовали электрические или другие силы взаимодействия.

Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Поскольку водород — наиболее простой атом, его спектральные серии наиболее изучены. Они хорошо подчиняются формуле Ридберга:

,

 

где R = 109 677 см−1 — постоянная Ридберга для водорода, — основной уровень серии. Спектральные линии возникающие при переходах на основной энергетический уровень называются резонансными, все остальные — субординатными.

Формула Бальмера:

где n = 3, 4, 5, 6; b = 3645,6 Å.

Теория Бора:

Бор сформулировал основные положения теории атома водорода в виде трех постулатов.

1. Электрон в атоме может двигаться только по определенным стационарным орбитам, каждой из которых можно приписать определенный номер. Такое движение соответствует стационарному состоянию атома с неизменной полной энергией. Это означает, что движущийся по стационарной замкнутой орбите электрон, вопреки законам классической электродинамики, не излучает энергии.

2. Разрешенными стационарными орбитами являются только те, для которых угловой момент импульса электрона равен целому кратному величины постоянной Планка. Поэтому для -ой стационарной орбиты выполняется условие квантования

. (5.3)

 

3. Излучение или поглощение кванта излучения происходит при переходе атома из одного стационарного состояния в другое (рис. 5.4). При этом частота излучения атома определяется разностью энергий атома в двух стационарных состояниях, так что

. (5.4)

 

 

Рис. 5.4.

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. Этому свойству в классической электродинамике соответствует круговая правая и левая поляризация электромагнитной волны. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны. Фотоны обозначаются буквой, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны. С точки зрения Стандартной модели фотон является калибровочным бозоном. Виртуальные фотоны[3] являются переносчиками электромагнитного взаимодействия, таким образом обеспечивая взаимодействие, например, между двумя электрическими зарядами.[4] Фотон — самая распространённая по численности частица во Вселенной. На один нуклон приходится не менее 20 миллиардов фотонов.[5]

В вакууме энергия и импульс фотона зависят только от его частоты (или, что эквивалентно, от длины волны):

,

, и, следовательно, величина импульса есть:

,

где — постоянная Планка, равная ; — волновой вектор и — его величина (волновое число); — угловая частота. Волновой вектор указывает направление движения фотона. Спин фотона не зависит от частоты.

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину.


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.144 с.