Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли.

2023-02-07 36
Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли. 0.00 из 5.00 0 оценок
Заказать работу

Физические условия на поверхности каждой из девяти планет всецело определяются их положением на орбите относительно Солнца. Ближайшие к светилу четыре планеты – Меркурий, Венера, Земля и Марс – имеют сравнительно небольшие массы, заметное сходство в составе слагающего их вещества и получают большое количество солнечного тепла, ощутимо влияющего на температуру поверхности планет. Две из них – Венера и Земля – имеют плотную атмосферу, Меркурий и Марс атмосферы практически не имеют.

Планеты-гиганты Юпитер, Сатурн, Уран и Нептун значительно удалены от Солнца, имеют гигантские массы и плотную мощную атмосферу. Все они отличаются высокой осевой скоростью вращения. Солнечное тепло почти не достигает этих планет. На Юпитере оно составляет 0,018·103 Вт/м2, на Нептуне – 0,008·103 Вт/м2.

Большая часть массы вещества Солнечной системы сосредоточена в самом Солнце – более 99%. На долю планет приходится менее 1% общей массы. Остальное вещество рассеяно в астероидах, кометах, метеоритах, метеорной и космической пыли.

Все планеты имеют сравнительно небольшие размеры и в сравнении с расстояниями между ними их можно представлять в виде материальной точки. Из курса физики известно, что произведение массы тела на его скорость называется импульсом:

P = m * U

а произведение радиуса-вектора на импульс – моментом импульса:

    L = r * P = r * m * U

Из приведенного выражения видно, что скорость V движения планеты по эллиптической орбите меняется вместе с изменением радиуса-вектора r. При этом на основании второго закона Кеплера имеет место сохранение моментов импульса:

r 1 * m * U 1 = r 2 * m * U 2

Видно, что при увеличении r1 скорость U 1 должна уменьшаться, и наоборот (масса т планеты неизменна). Если выразить линейную скорость U через угловую скорость ω:

U = ω * r

То выражение для момента импульса планеты примет вид:

L = m * ω * r 2

Из последней формулы следует, что при сжатии вращающихся систем, то есть  при уменьшении r и постоянстве т, угловая скорость вращения ω неизбежно возрастает.

В таблице приведены орбитальные параметры планет. Хорошо видно, как по мере возрастания радиуса орбиты (гелиоцентрического расстояния) уменьшается период обращения и, следовательно, скорость движения планет.

 

Орбитальные параметры планет Солнечной системы.

Меркурий Венера Земля Марс Юпитер
Радиус орбиты, 109 м 57,9 108,2 149,6 227,9 778,3
Масса, 1027 г 0,330 4,870 5,976 0,642 1900
Плотность, г/см3 5,43 5,25 5,52 3,95 6,84
Экваториальный радиус, 106 м 2,439 6,051 6,378 3,393 71,398
Период вращения, земные сутки или часы 58,65 243,022±0,06 23,945 24,6299 9,841
Наклон экватора к орбите, градусы 2±3 177,3 23,45 23,98 3,12
Период обращения, земные сутки 87,96935 224,7 365,26 686,98 4333

 

Сатурн Уран Нептун Плутон
Радиус орбиты, 109 м 1427,0 2869,6 4496,6 5900,1
Масса, 1027 г 568,8 86,87 102,0 0,013
Плотность, г/см3 5,85 5,55 5,60 0,9
Экваториальный радиус, 106 м 60,33 26,20 25,23 1,5
Период вращения, земные сутки или часы 10,233 17,24 18,2 ± 0,4 6,387
Наклон экватора к орбите, градусы 26,73 97,86 29,56 118,5
Период обращения, земные сутки 10759 30685 60189 90465

При движении планеты вокруг Солнца сила притяжения последнего уравнивается центростремительной силой, приложенной к планете:

G *( M * m )/ r 2 = ( m * U 2 )/ r

Отсюда легко найти среднюю орбитальную скорость движения планеты, которая совпадает с круговой скоростью:

U = sqrt ( G * M / α ) = 2* π * α / T

где r = a – расстояние от Солнца; Т – период обращения планеты вокруг светила.

В качестве примера найдем среднюю орбитальную скорость вращения Земли, положив в формулу Т = 365,2564·86400 с = 31,56·106 с, а = 149,6·106 км, получим U = 29,78 км/с.

Первые представления о формах и размерах Земли появились еще в глубокой древности. Античные мыслители (Пифагор - V век до нашей эры, Аристотель - III век до нашей эры и другие) высказывали мысль, что наша планета имеет шарообразную форму.

Геодезические и астрономические исследования последующих столетий дали возможность судить о действительной форме Земли и ее размерах. Известно, что формирование Земли происходило под действием двух сил - силы взаимного притяжения частиц ее массы и центробежной силы, обусловленной вращением планеты вокруг своей оси.

Равнодействующей обеих названных сил является сила тяжести, выражаемая в ускорении, которое приобретает каждое тело, находящееся у поверхности Земли. На рубеже XVII и XVIII веков впервые Ньютон теоретически обосновал положение о том, что под воздействием силы тяжести Земля должна иметь сжатие в направлении оси вращения и, следовательно, ее форма представляет эллипсоид вращения, или сфероид. Степень сжатия зависит от угловой скорости вращения. Чем быстрее вращается тело, тем больше оно сплющивается у полюсов.

На рисунке, изображающем эллипсоид вращения, выражена большая экваториальная ось (ЗОВ) и малая полярная ось (СОЮ).

Величины, а = ЗОВ / 2 и в = СОЮ / 2 соответствуют полуосям эллипсоида. Сжатие эллипсоида будет выражено (а - в)/а. Разница полярного и экваториального радиусов составляет 21 километр. Детальными последующими измерениями, особенно новыми методами исследования с искусственных спутников, было показано, что Земля сжата не только на полюсах, но также несколько и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 метров), то есть Земля является не двухосным, а трехосным эллипсоидом. Кроме того, расчетами Жонгловича и Тропининой показана несимметричность Земли по отношению к экватору: южный полюс расположен ближе к экватору, чем северный. В связи с расчленением рельефа (наличием высоких гор и глубоких впадин) действительная форма Земли является более сложной, чем трехосный эллипсоид. Наиболее высокая точка на Земле - гора Джомолунгма в Гималаях - достигает высоты 8848 метров. Наибольшая глубина 11 034 метров обнаружена в Марианской впадине. Таким образом, наибольшая амплитуда рельефа земной поверхности составляет немногим менее 20 километров. Учитывая эти особенности, немецкий физик Листинг в 1873 году фигуру Земли назвал геоидом, что дословно обозначает "землеподобный".

Геоид – некоторая воображаемая уровенная поверхность, которая определяется тем, что направление силы тяжести к ней всюду перпендикулярно. Эта поверхность совпадает с уровнем воды в Мировом океане, который мысленно проводится под континентами. Это та поверхность, от которой производится отсчет высот рельефа. Поверхность геоида приближается к поверхности трехосного эллипсоида, отклоняясь от него местами на величину 100 - 150 метров (повышаясь на материках и понижаясь на океанах)

что, по-видимому, связано с плотностными неоднородностями масс в Земле и появляющимися из-за этого аномалиями силы тяжести.

В настоящее время принимается эллипсоид Красовского и его учеников (Изотова и других), основные параметры которого подтверждаются современными исследованиями и с орбитальных станций. По этим данным экваториальный радиус равен 6378,245 километров, полярный радиус –

6356,863 километров, полярное сжатие – 1/298,25. Объем Земли составляет 1,083 • 1012 квадратных километров, а масса - 6 • 1027 грамм. Ускорение силы тяжести на полюсе 983 сантиметров/секунду в квадрате, на экваторе 978 сантиметров/секунду в квадрате. .Площадь поверхности Земли около 510 миллионов квадратных километров, из которых 70,8% представляет Мировой океан и 29,2% - суша. В распределении океанов и материков наблюдается определенная дисимметрия. В Северном полушарии это соотношение составляет 61 и 39%, в Южном-81 и 19%. Фигура Земли в первом приближении представляет собой эллипсоид вращения, у которого экваториальный радиус (а) больше полярного (b) на 21389 километров. Отсюда полярное сжатие земного эллипсоида составляет 

ε = (α–b)/α=1/298,25

Это различие в длинах радиуса обусловливает современное изменение силы тяжести от полюса до экватора на величину 1,6 гал. Отношение центробежной силы Р к силе тяготения F называют геодинамической постоянной q:

q = ω2α / (( G * M )/α2) = ω2α3 / G * M = 34614,072*10-7 = 1/288

Оно показывает, что сила тяжести на поверхности Земли определяется главным образом притяжением ее массы, а вклад центробежного ускорения составляет всего 0,5%. Тем не менее, эта величина действует на протяжении длительного времени, играет исключительно важную роль в дифференциации земного вещества, динамике водных и воздушных масс. Изменение силы Р по широте и сжатие Земли совместно определяют нормальное изменение поля силы тяжести у Земли.

Для вычислений нормальных значений силы тяжести Земли используются формулы, рассчитанные для эллипсоида вращения в предположении, что Земля состоит из концентрических слоев, однородных по плотности.

Формулы Клеро (1743):

G 0 = g (1+β* sin 2φ-β’* sin 22φ);

b = 5/2q-α;

β’ = 1/8α2+1/4αβ
где: g0 – нормальное значение силы тяжести;
g – значение силы тяжести на экваторе;
φ – широта пункта наблюдения;
q ≈ 1/300.

Формулы Клеро позволяют вычислить теоретическое значение силы тяжести в какой-либо точке земной поверхности, если известна широта этого пункта. Коэффициенты в формуле Клеро для нормального распределения силы тяжести выводились многими учеными, но практическое применение нашли формула Гельмерта и международная формула Кассиниса.

Формула Гельмерта (1901-1909):

g 0 = 978,030*1+0,005302* sin 2φ-0,000007* sin 22φ)

Формула Кассиниса:

g 0 = 978,049*(1+0,0052884* sin 2φ-0,0000059* sin 22φ)

Чтобы наблюденные значения силы тяжести, относящиеся к реальной поверхности Земли, сравнивать с нормальными, их необходимо приводить (редуцировать) к уровню эллипсоида. Есть поправка в свободном воздухе, поправка за промежуточный слой, поправка за рельеф.

 

Первая в мире гравикарта.

Такой карты не было еще никогда. Переливы цветов показывают еле уловимые изменения гравитационного поля Земли. Голубым обозначены области, где притяжение планеты слегка ослабевает. Гравитационные аномалии не воспринимаются человеческими органами чувств, поэтому ученые нанесли эти данные на сферу, преувеличив пики и провалы. Так была получена удивительно четкая иллюстрация предмета исследования.

Выглядит она, возможно, несколько странно, но не надо обольщаться – эта карта и те, что последуют за ней, позволят получить новые сведения о том, как океаны движутся и влияют на климат. Само понимание того, как парниковые газы могут изменить планету, будет зависеть от этих пиков и впадин.

Карта – первый продукт проекта, в котором участвуют два спутника, находящихся в 450 км от Земли. Спутники собирают информацию, выполняя тщательно выверенные маневры на орбите. В то время как один покачивается и медленно перемещается в неровном гравитационном поле земли, второй, следующий на расстоянии 220 километров, измеряет колебания в разделяющем их расстоянии вплоть до микрона.

Именно изменения расстояния и описывают природу и масштабы гравитационных аномалий, над которыми пролетают спутники. Очевидные пики гравитации были известны уже некоторое время - например, Гималаи, где масса продолжает накапливаться вместе с гравитационным притяжением, в то время как порода собирается в этой области в результате перемещения тектонических плит Земли. Но собрать подробности удалось только с помощью Grace, особенно в отношении океанов, которые образует постоянно перемещающаяся водная масса. Первая карта, созданная Grace, статична – своего рода "гравитационный слепок" Земли. Но этот профиль постоянно изменяется – вместе с движениями земной коры, океанов и атмосферы над ними. Теперь Grace будет раз в 30 дней присылать на Землю новый профиль, из которых в будущем можно будет составить динамическую модель и следить за изменениями.

Гравитационные аномалии

Термин аномалии означает отклонения от некоторой "нормы" - то есть значения, которое можно предсказать, вычислив его по формуле. Вычисленное значение силы тяжести называют "нормальным", а наблюденное - аномальным. Если принять Землю равновесным эллипсоидом вращения, со сжатием, вычисленным по спутниковым данным 1: 298,256 – то значение силы тяжести можно вычислить по формуле принятой Международным Геофизическим и Геодезическим союзом на своей Генеральной Ассамблее в августе 1971 года.

Известно, что сила тяжести зависит от высоты точки наблюдения. Наблюдения производятся, в крайнем случае, на уровне моря, то есть на высоте, равной нулю. Все сухопутные определения силы тяжести выполняются на разных высотах. Так как поверхность эллипсоида не совпадает с поверхностью уровня, поэтому развита теория приведения гравитационной аномалии (редукции) к одной и той же поверхности. Кроме того, сила тяжести зависит и от масс, лежащих между эллипсоидом и геоидом. Чтобы учесть и эти факторы, развита теория геологических редукций. В таком случае вместе с гравитационными аномалиями обязательно должен указываться и вид редукций, с которыми данная аномалия вычислена. Существуют аномалии в свободном воздухе, аномалии Фая[1], аномалии Буге[2], изостатические аномалии. Гравитационные аномалии на Земле, как правило, меньше 100 мГал (1Гал= 1см/с2), их среднеквадратическая вариация по Земле составляет величину около 20 мГал. Следовательно, гравитационное поле Земли достаточно гладкое. Для экстремальных условий (островные дуги, глубоководные впадины) гравитационные аномалии достигают величины 400 мГал, что в 12,5 раз меньше разницы в значениях силы тяжести на полюсе и экваторе и составляют всего 0,04% от величины силы тяжести. Потому для получения данных, по которым можно судить о внутреннем строении нашей планеты,

необходимо изучать аномалии на уровне не только миллигалов, но и микрогалов, чего и добиваются геофизики.

Вторая характеристика гравитационного поля – это отклонение отвесной линии (вертикали) от нормали к эллипсоиду. Это отклонение также невелико и составляет секунды дуги. Геодезические работы в Индии близ горного массива Гималаев показали, что координаты астрономических пунктов из-за отклонений отвесной линии отличаются от геодезических на 5,2", тогда как вычисленное отклонение, связанное с притяжением гор, составляет 27,9". Для объяснения этого явления английский геодезист Пратт высказал мысль, что под горами плотность пород гораздо меньше, чем коренные породы под равнинами. Иными словами, если все породы разбить на блоки, то плотность этих блоков должна зависеть от их толщины: чем толще блок, тем меньше плотность. При этом вес всех блоков на некоторой поверхности, называемой поверхностью компенсации, один и тот же. Вся земная кора, таким образом, находится в равновесии. Эта гипотеза Пратта получила название изостатической.

Конечно, с геологической точки зрения эта гипотеза никуда не годится. Французский геодезист Эри предложил более правдоподобную схему: земные блоки по Эри подобно айсбергами на море плавают на более плотной, но и более пластичной средневерхней мантии. В этом случае, так же как и у айсбергов, должна образоваться под горными массивами "подводная часть" с плотностью, меньшей, чем плотность вмещающих пород. Таким образом эффект гравитационной компенсации должны создавать корни гор, существование которых сейсмологи подтверждают.

Строение земной коры невозможно изучить, пользуясь только одним методом. Геофизики применяют все доступные им методы, прежде всего сейсмологический и гравиметрический. По современным представлениям земная кора имеет разную толщину в разных регионах. В горах толщина ее достигает 60 и более километров. Состоит она из разных слоев. Большой объем занимает кислые (гранитные) породы с плотностью 2,67. Равнины покрыты осадочными породами толщиной несколько километров и с плотностью 2,2. Ниже этих слоев лежат основные породы - базальты с плотностью 2,8. Толщина коры для равнинных регионов полагают равной 30 км. Горные районы и равнины образуют основные морфологические особенности континентов. При переходе к океану, гранитный слой постепенно выклинивается, а осадочные породы покрывают на абиссальных котловинах, в основном, базальтовые породы. При этом толщина коры становится меньше и в среднем составляет 10-15 км. Особенно тонкой кора становится в глубоководных впадинах (4-5 км)

 

 

Вопрос №2.


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.038 с.