Расчет параметров настройки типовых регуляторов линейной САР — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Расчет параметров настройки типовых регуляторов линейной САР

2023-02-03 22
Расчет параметров настройки типовых регуляторов линейной САР 0.00 из 5.00 0 оценок
Заказать работу

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине «Теория автоматического управления»

на тему: «Исследование линейных и нелинейных систем управления».


Реферат

 

32 с., 26 рис., 3 табл., 3 источника информации

 

СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ, АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР, СИНТЕЗ, УПРАВЛЯЕМОСТЬ, НАБЛЮДАЕМОСТЬ, НЕЛИНЕЙНЫЙ, АВТОКОЛЕБАНИЯ

 

Основной задачей курсового проекта является практическое использование знаний, полученных в процессе изучения курса, развитие навыков в расчете и выборе оптимальных параметров настройки регуляторов одноконтурных систем регулирования при проектировании.

В данной работе синтезированы П-, ПИ-, ПИД-регуляторы для линейной САР, произведены анализ качества регулирования, оценка управляемости и наблюдаемости САР, для нелинейной САР определена возможность возникновения автоколебаний.


Содержание

Введение

1  Расчет параметров настройки типовых регуляторов линейной САР

1.1 Анализ объекта регулирования

1.2 Расчет коэффициентов передачи п-регулятора

1.3 Расчет параметров настройки пи-регулятора

1.4 Расчет параметров настройки пид-регулятора

2  Анализ переходных характеристик линейной сар

2.1 Оценка качества САР по каналу управляющего воздействия

2.2 Оценка качества САР по каналу возмущающего воздействия

2.3 Оценка запаса устойчивости САР

3  Оценка управляемости и наблюдаемости линейной САР

3.1 Анализ САР с п-регулятором

3.1.1 Разработка математической модели типа «вход-состояние-выход»

3.1.2 Структурная схема САР с п-регулятором

3.1.3 Оценка управляемости САР с п-регулятором

3.1.4 Оценка наблюдаемости САР с п-регулятором

3.2 Анализ САР с пи-регулятором

3.2.1 Разработка математической модели типа «вход-состояние-выход»

3.2.2 Структурная схема САР с пи-регулятором

3.2.3 Оценка управляемости САР с пи-регулятором

3.2.4 Оценка наблюдаемости САР с пи-регулятором

3.3 Анализ САР с пид-регулятором

3.3.1 Разработка математической модели типа «вход-состояние-выход»

3.3.2 Структурная схема САР с пид-регулятором

3.3.3 Оценка управляемости САР с пид-регулятором

3.3.4 Оценка наблюдаемости САР с пид-регулятором

4  Анализ нелинейной САР

4.1 Описание нелинейной САР

4.2 Оценка возможности возникновения автоколебаний

4.3 Моделирование нелинейной САР в simulink

Заключение

Список использованных источников


Введение

 

Всякая система регулирования может быть представлена рядом элементов, выполняющих определенные функции. В данной курсовой работе будут рассмотрены непрерывная система регулирования, состоящая из объекта регулирования, автоматического регулятора, и нелинейная система, включающая нелинейное звено.

Принципиально отличает объект регулирования от всех остальных элементов системы то, что он обычно бывает, задан и при разработке системы автоматического регулирования не может быть изменен, тогда как остальные элементы выбираются специально для решения заданной задачи управления.

Задача выбора параметров настройки в системе автоматического регулирования или управления состоит в том, чтобы найти такие параметры регулятора, при которых переходный процесс в системе удовлетворяет следующим требованиям:

· затухание переходного процесса должно быть интенсивным;

· перерегулирование должно быть минимальным;

· продолжительность переходного процесса должна быть минимальным.

Большинство уравнений объектов являются нелинейными, однако в этих случаях знание решений, полученных для линейных систем, часто дает возможность подойти к решению для нелинейной системы.

 


Анализ нелинейной САР

 

Описание нелинейной САР

 

Cтруктурная схема нелинейной САР представлена на рисунке 21.

 

Рисунок 21 – Структурная схема нелинейной САР

 

Роль АР выполняет ПИ-регулятор с передаточной функцией, полученной в п. 1.4:

 

.

 

Нелинейное звено – звено с насыщением (ограничением), статическая характеристика звена изображена на рисунке 22.

 

Рисунок 22 – Статическая характеристика нелинейного элемента

 

Параметры звена с насыщением: .

 


Оценка возможности возникновения автоколебаний

 

Для оценки возможности и устойчивости автоколебаний в нелинейной САР по методу Гольдфарба необходимо линеаризовать систему. Применим к нелинейному элементу гармоническую линеаризацию. Тогда передаточная функция звена с насыщением будет иметь вид:

 

,  

где ,

 при , т. е. .

 

Таким образом, передаточная функция нелинейного элемента принимает вид:

 

.

 

Условие возникновения автоколебаний:

 

,  

или

,  

где ,

 

 – передаточная функция линейной части разомкнутой САР с ПИ-регулятором (см. п. 1.4).

Уравнение (19) решаем графически. Для этого необходимо построить на одной комплексной плоскости годограф Найквиста линейной части  и годограф Гольдфарба .

Script 21:

 

>> A=0.001:0.001:5;

>> Wnon=(2./pi).*(asin(2.4./A)+(2.4./A).*sqrt(1-5.76./A.^2));

>> Z=-1./(Wnon);

>> Re=real(Z);

>> Im=imag(Z);

>> w=0.1:0.01:1;

>> W2=(b3*(j*w).^3+b2*(j*w).^2+b1*(j*w)+b0)./ ...

(a4*(j*w).^4+a3*(j*w).^3+a2*(j*w).^2+a1*(j*w));

>> re=real(W2);

>> im=imag(W2);

>> plot(re,im,Re,Im);grid

 

Построенные в результате выполнения Script 21 годографы приведены на рисунке 23. На рисунке 24 показана увеличенно область, в которой годографы могут пересекаться. Видно, что годографы не пересекаются, значит автоколебания в системе невозможны.

 

Рисунок 23 – Годографы линеаризованной САР

Рисунок 24 – Годографы линеаризованной САР (увеличенно)

 

Моделирование нелинейной САР в Simulink

 

Для подтверждения сделанных выводов построим модель САР в Simulink. Схема модели изображена на рисунке 25, переходная характеристика, полученная с помощью этой модели – на рисунке 26.

 

Рисунок 25 – Схема s-модели нелинейной САР

 

Рисунок 26 – Переходная характеристика нелинейной САР


Очевидно, что автоколебаний в системе нет, значит, расчеты и вывод о том, что в системе невозможны автоколебания, были сделаны верно.

 


Заключение

 

В ходе выполнения курсового проекта был произведен анализ объекта регулирования, построены кривая разгона ОР.

В результате проведения необходимых расчетов были определены оптимальные параметры настройки П, ПИ, ПИД-регуляторов, запас устойчивости систем, оценено качество переходных процессов САР с П, ПИ, ПИД-регуляторами. Также был проведен анализ наблюдаемости и управляемости САР: система со всеми тремя регуляторами оказалась полностью наблюдаемой и управляемой.

Для случая, когда регулирующий орган имеет нелинейную характеристику был проведен анализ на возможность возникновения автоколебаний в нелинейной системе регулирования методом Гольдфарба. Установлено, что автоколебания в системе невозможны. Невозможность автоколебаний подтверждена моделированием системы в Simulink.

 


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине «Теория автоматического управления»

на тему: «Исследование линейных и нелинейных систем управления».


Реферат

 

32 с., 26 рис., 3 табл., 3 источника информации

 

СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ, АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР, СИНТЕЗ, УПРАВЛЯЕМОСТЬ, НАБЛЮДАЕМОСТЬ, НЕЛИНЕЙНЫЙ, АВТОКОЛЕБАНИЯ

 

Основной задачей курсового проекта является практическое использование знаний, полученных в процессе изучения курса, развитие навыков в расчете и выборе оптимальных параметров настройки регуляторов одноконтурных систем регулирования при проектировании.

В данной работе синтезированы П-, ПИ-, ПИД-регуляторы для линейной САР, произведены анализ качества регулирования, оценка управляемости и наблюдаемости САР, для нелинейной САР определена возможность возникновения автоколебаний.


Содержание

Введение

1  Расчет параметров настройки типовых регуляторов линейной САР

1.1 Анализ объекта регулирования

1.2 Расчет коэффициентов передачи п-регулятора

1.3 Расчет параметров настройки пи-регулятора

1.4 Расчет параметров настройки пид-регулятора

2  Анализ переходных характеристик линейной сар

2.1 Оценка качества САР по каналу управляющего воздействия

2.2 Оценка качества САР по каналу возмущающего воздействия

2.3 Оценка запаса устойчивости САР

3  Оценка управляемости и наблюдаемости линейной САР

3.1 Анализ САР с п-регулятором

3.1.1 Разработка математической модели типа «вход-состояние-выход»

3.1.2 Структурная схема САР с п-регулятором

3.1.3 Оценка управляемости САР с п-регулятором

3.1.4 Оценка наблюдаемости САР с п-регулятором

3.2 Анализ САР с пи-регулятором

3.2.1 Разработка математической модели типа «вход-состояние-выход»

3.2.2 Структурная схема САР с пи-регулятором

3.2.3 Оценка управляемости САР с пи-регулятором

3.2.4 Оценка наблюдаемости САР с пи-регулятором

3.3 Анализ САР с пид-регулятором

3.3.1 Разработка математической модели типа «вход-состояние-выход»

3.3.2 Структурная схема САР с пид-регулятором

3.3.3 Оценка управляемости САР с пид-регулятором

3.3.4 Оценка наблюдаемости САР с пид-регулятором

4  Анализ нелинейной САР

4.1 Описание нелинейной САР

4.2 Оценка возможности возникновения автоколебаний

4.3 Моделирование нелинейной САР в simulink

Заключение

Список использованных источников


Введение

 

Всякая система регулирования может быть представлена рядом элементов, выполняющих определенные функции. В данной курсовой работе будут рассмотрены непрерывная система регулирования, состоящая из объекта регулирования, автоматического регулятора, и нелинейная система, включающая нелинейное звено.

Принципиально отличает объект регулирования от всех остальных элементов системы то, что он обычно бывает, задан и при разработке системы автоматического регулирования не может быть изменен, тогда как остальные элементы выбираются специально для решения заданной задачи управления.

Задача выбора параметров настройки в системе автоматического регулирования или управления состоит в том, чтобы найти такие параметры регулятора, при которых переходный процесс в системе удовлетворяет следующим требованиям:

· затухание переходного процесса должно быть интенсивным;

· перерегулирование должно быть минимальным;

· продолжительность переходного процесса должна быть минимальным.

Большинство уравнений объектов являются нелинейными, однако в этих случаях знание решений, полученных для линейных систем, часто дает возможность подойти к решению для нелинейной системы.

 


Расчет параметров настройки типовых регуляторов линейной САР

 

Анализ объекта регулирования

 

Кривая разгона показывает реакцию объекта регулирования на единичное ступенчатое воздействие. Она строится по данным, полученным в результате решения дифференциального уравнения системы при скачкообразном входном воздействии и нулевых начальных условиях.

Передаточная функция объекта регулирования

 

(

 

Построим кривую разгона, с помощью системы MATLAB.

Script 1:

 

>> Wop=tf([0.9 7 2.2],[336 146 21 1]);

>> step(Wop);grid

 

Рисунок 2 – Кривая разгона ОР

Анализируя разгонную характеристику, можно сделать вывод, что ОР обладает свойством самовыравнивания и запаздывания, является многоемкостным.

 

Расчет коэффициентов передачи П-регулятора

 

Степень колебательности переходного процесса:

 

 

Передаточная функция П-регулятора определяется по формуле

 

 

 

Для того чтоб определить коэффициент передачи , необходимо построить кривую равной степени затухания.

Script 2:

 

>> m=0.313;

>> w=0:0.001:0.26;

>> Wex=(0.9*((j-m).*w).^2+7*(j-m).*w+2.2)./ ...

(336*((j-m).*w).^3+146*((j-m).*w).^2+21*(j-m).*w+1);

>> Win=1./Wex;

>> R=real(Win);

>> I=imag(Win);

>> Ki=w*(m^2+1).*I;

>> Kp=m.*I-R;

>> plot(Kp,Ki);xlabel('Axis Kp');ylabel('Axis Ki');grid


Рисунок 3 – Кривая равной степени затухания

 

Согласно полученной кривой kp=2.663 при ki=0. Значит коэффициент передачи П-регулятора kP=2.663.

Построим переходную характеристику САР с П-регулятором.

Script 3:

 

>> Wop=tf([0.9 7 2.2],[336 146 21 1]);

>> Wap1=tf(2.663);

>> W1=series(Wap1,Wop)

Transfer function:

2.397 s^2 + 18.64 s + 5.859

----------------------------

336 s^3 + 146 s^2 + 21 s + 1

>> Fi1=feedback(W1,1)

Transfer function:

2.397 s^2 + 18.64 s + 5.859

-------------------------------------

336 s^3 + 148.4 s^2 + 39.64 s + 6.859

>> step(Fi1);grid


Рисунок 4 – Переходная характеристика САР с П-регулятором

 

Определяем полученную в результате синтеза степень затухания по формуле

 

(

 

Script 4:

 

>> ((1.14-0.854)-(0.895-0.854))/(1.14-0.854)

ans = 0.8566

 

Полученная степень затухания примерно совпадает с заданной, значит коэффициент передачи выбран верно.

 

Расчет параметров настройки ПИ-регулятора

 

Передаточная функция ПИ-регулятора определяется по формуле

 

 

Коэффициенты kp и ki определяем по кривой равной степени затухания (рисунок 3). kp = 1.21 и ki = 0.098. Тогда передаточная функция ПИ-регулятора будет иметь вид

 

.

 

Построим переходную характеристику САР с ПИ-регулятором.

Script 5:

 

>> Wop=tf([0.9 7 2.2],[336 146 21 1]);

>> Wap2=tf([1.21 0.098],[1 0]);

>> W2=series(Wap2,Wop)

Transfer function:

1.089 s^3 + 8.558 s^2 + 3.348 s + 0.2156

----------------------------------------

336 s^4 + 146 s^3 + 21 s^2 + s

>> Fi2=feedback(W2,1)

Transfer function:

1.089 s^3 + 8.558 s^2 + 3.348 s + 0.2156

--------------------------------------------------

336 s^4 + 147.1 s^3 + 29.56 s^2 + 4.348 s + 0.2156

>> step(Fi2);grid


Рисунок 5 – Переходная характеристика САР с ПИ-регулятором

 

По формуле (3) определяем степень затухания ψ

Script 6:

 

>> ((1.31-1)-(1.04-1))/(1.31-1)

ans = 0.8710

 

Полученная степень затухания примерно совпадает с заданной, значит параметры настройки регулятора выбраны верно.

 

Расчет параметров настройки ПИД-регулятора

 

Передаточная функция ПИД-регулятора определяется по формуле

 

,  

 

где .

Т. к. для ПИД-регулятора необходимо определить три коэффициента, то построим кривую равной степени затухания с учетом времени дифференцирования .

Script 7:

 

>> w=0.15:0.001:0.26;

>> Wex=(0.9*((j-m).*w).^2+7*(j-m).*w+2.2)./ ...

(336*((j-m).*w).^3+146*((j-m).*w).^2+21*(j-m).*w+1);

>> Win=1./Wex;

>> R=real(Win);

>> I=imag(Win);

>> Ki=w*(m^2+1).*(I+w*2.04);

>> Kp=m.*I-R+2*m.*w*2.04;

>> plot(Kp,Ki);xlabel('Axis Kp');ylabel('Axis Ki');grid

 

Рисунок 6 – Кривая равной степени затухания

 

Коэффициенты kp и ki определяем по кривой равной степени затухания (рисунок 6). kp = 2.05 и ki = 0.18. Тогда передаточная функция ПИД-регулятора будет иметь вид

.

 

Построим переходную характеристику САР с ПИД-регулятором.

Script 8:

 

>> Wop=tf([0.9 7 2.2],[336 146 21 1]);

>> Wap3=tf([2.04 2.05 0.18],[1 0]);

>> W3=series(Wap3,Wop)

Transfer function:

1.836 s^4 + 16.13 s^3 + 19 s^2 + 5.77 s + 0.396

-----------------------------------------------

336 s^4 + 146 s^3 + 21 s^2 + s

>> Fi3=feedback(W3,1)

Transfer function:

1.836 s^4 + 16.13 s^3 + 19 s^2 + 5.77 s + 0.396

-----------------------------------------------

337.8 s^4 + 162.1 s^3 + 40 s^2 + 6.77 s + 0.396

>> step(Fi3);grid

 

Рисунок 7 – Переходная характеристика САР с ПИД-регулятором

По формуле (3) определяем степень затухания ψ

Script 9:

 

>> ((1.33-1)-(1.05-1))/(1.33-1)

ans =0.8485

 

Полученная степень затухания примерно совпадает с заданной, значит параметры настройки регулятора выбраны верно.

 



Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.134 с.