Нормальная и аномальная дисперсия. — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Нормальная и аномальная дисперсия.

2023-01-01 27
Нормальная и аномальная дисперсия. 0.00 из 5.00 0 оценок
Заказать работу

Дисперсией вещества называется величина , определяющая степень растянутости спектра вблизи данной длины волны λ. Дисперсия называется нормальной, если с ростом длины волны показатель преломления уменьшается, т.е. , и аномальной, если . Для прозрачных веществ характерно монотонное возрастание показателя преломления с уменьшением длины волны.

Основы теории дисперсии (уравнение дисперсии).

Основы теории дисперсии могут быть получены, если рассматривать взаимодействие световых волн с электронами, входящими в состав атомов и молекул. Электроны в атомах и молекулах удерживаются около своих положений равновесия квазиупругими силами. Таким образом, электроны обладают определенным набором собственных частот колебаний ωо i. Под действием падающей световой волны электроны в атомах и молекулах совершают вынужденные колебания с частотой, совпадающей с частотой падающей световой волны ω (без учета затухания). Первичная электромагнитная волна, распространяясь через вещество, вызывает вынужденные колебания электронов, и они становятся источниками вторичных волн. Вторичные волны, складываясь с первичной, образуют результирующую волну с амплитудой и фазой, отличными от амплитуды и фазы первичных волн. В результате волна проходит через вещество с фазовой скоростью, отличной от скорости, с которой она распространялась бы в вакууме.В идеальной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных
волн, и поглощения света не происходит. В реальном теле часть падающей энергии переходит в другие формы (главным образом, в тепловую) – наблюдается поглощение света.

Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ωо. При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной. Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ωо i даст в спектре прошедшего через него света узкие линии поглощения. Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.

Зависимость показателя преломления n среды от частоты ω электромагнитной волны имеет вид:   

,

где No концентрация атомов, ωо i – собственные частоты колебаний электронов, m – масса электрона, εо – электрическая постоянная.

Связь с поглощением

Пусть напряж. эл-го поля направл. вдоль OX,
E=E0xcos(wt-kx+a), Pe=pen0, где pe-дипольн. момент отдельн. атома, n0- число атомов в ед. объема. Т.к. поле направ вдоль ox то pe=-ex, т.о. Pe=-exn0 => n2=1-en0x/(Eoxcos(wt-kx+a)), Запишем диф-е ур-е описыв. движен. эл-в в атоме F=ma=md2x/(d2t) на эл-н в атоме действует a) Fкул=-eEoxcos(wt-kx+a), b) Fупр=-kx=-mw02x, w0=Ö(k/x) => k=w02m,=> md2x/(d2t)=-eEoxcos(wt-kx+a)-mw02x, m- масс. эл-на. Решая это диф. ур-е окнчательно получаем n=Ö(1+n0e2/(e0E(w02-w02))). Видно что это выр-е терпит разрыв при w=w02 такой рез. получается в рез-те того что в 2-м законе Ньютона не была учтена сила трения (затухания) если учесть затухание то разрыва этой ф-ии не будет. Во всякой реальной колеб. сист. всегда есть затухание. Аномальная дисперсия набл-ся в области част-т близких к колеб. эл-в в атоме т.к. в общем случае таких частот (резонансов) м. б. несколько.

79. Поглощение света (закон Бугера-Ламберта-Бера).

ПОГЛОЩЕНИЕ СВЕТА - уменьшение интенсивности оптического излучения (света), проходящего через среду, заполненную в-вом.

Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде. Закон выражается следующей формулой:

,

где I0 — интенсивность входящего пучка, l — толщина слоя вещества, через которое проходит свет, kλ — коэффициент поглощения (не путать с безразмерным показателем поглощения κ, который связан с kλ формулой kλ = 4πκ / λ, где λ - длина волны). Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

80. Групповая скорость. Групповая скорость — это величина, характеризующая скорость распространения «группы волн» - то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким спектром). Обычно интерпретируется как скорость перемещения максимума амплитудной огибающей квазимонохроматического волнового пакета (или цуга волн). В случае рассмотрения распространения волн в пространстве размерностью больше единицы подразумевается как правило волновой пакет близкий по форме к плоской волне. Групповая скорость во многих важных случаях определяет скорость переноса энергии и информации квазисинусоидальной волной (хотя это утверждение в общем случае требует серьезных уточнений и оговорок).Групповая скорость определяется динамикой физической системы, в которой распространяется волна (конкретной среды, конкретного поля итп). В большинстве случаев подразумевается линейность этой системы (точно или приближенно).Для одномерных волн групповая скорость вычисляется из закона дисперсии: ,

где ω — угловая частота, k — волновое число.

 

 

 

Вращательная дисперсия

Вращательная дисперсия — изменение угла вращения плоскости поляризации φ в зависимости от длины волны λ. В прозрачных веществах угол φ обычно возрастает с уменьшением λ, причём для некоторых сред приближённо выполняется закон Био: φ = К2 (К — постоянная для данного вещества). Вращательная Д. с. такого типа называется нормальной. В области поглощения света ход вращательной Д. с. значительно сложнее, причём угол φ может достигать огромных величин (аномальная вращательная дисперсия)

82. Отражение и преломление света.   Законы отражения и преломления: 1. Угол отражения равен углу падения.

 

2. Произведение n sinθ одинаково как для падающего луча, так и для преломленного (закон Снелла):

3. Интенсивность отраженного света зависит как от угла падения, так и от направления поляризации. Для вектора Е, перпендикулярного плоскости падения, коэффициент отражения R| равен

 

 

Для вектора Е, параллельного плоскости падения, коэффициент отражения R|| равен

 

4. Для перпендикулярно падающего луча (разумеется, при любой поляризации!)


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.