Топология локальной промышленной сети. — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Топология локальной промышленной сети.

2022-12-20 54
Топология локальной промышленной сети. 0.00 из 5.00 0 оценок
Заказать работу

Топология локальной промышленной сети.

Топология сети описывает способ объединения различных сетевых устройств. Выбор топологии влияет на характеристики сети: способ доступа к сети, возможность ее расширения, надежность. Основными топологиями являются: шина (bus), кольцо (ring), звезда (star).

При построении сетей используются два варианта подключения сетевых устройств: радиальное и магистральное:

— радиальное соединение между двумя сетевыми устройствами (компьютером, PLC и т.п.) называется соединением точка к точке (point to point interface);

— магистральное соединение сетевых устройств, при котором сетевые устройства независимо выходят на общую линию передачи, называется «многоточечным» соединением (multipoint).

Топология «Шина» (магистраль). Наиболее простые и распространенные сети. Для объединения группы устройств в сеть здесь применяется единый (магистральный) кабель, имеющий несколько промежуточных ответвлений, которые используются для соединения магистрального провода с сетевыми устройствами (рис.1.4). Тип соединения — многоточечный. Каждое сетевое устройство может передавать данные только в том случае, если другие «молчат».

Сеть с такой топологией отличается легкостью расширения, однако чем больше абонентских узлов в сети, тем ниже ее производительность. Выход из строя магистрального кабеля влечет за собой остановку всей сети, однако выход из строя одного узла не нарушает работоспособности сети.

Топология «Кольцо». Информация передается от узла к узлу последовательно по физическому кольцу. Каждый узел передает информацию только одному из узлов (рис.1.5). Тип соединения — точка к точке. Приемный узел выступает в роли повторителя, регенерируя полученную информацию.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях, где передаваемые данные получают все узлы сети. На различных участках сети могут использоваться разные виды физической передающей среды. Выход из строя линии связи приводит к отказу сети.

Топология «Звезда». Все сетевые узлы подключены собственным физическим каналом связи к центральному концентратору или промышленному контроллеру (рис.1.6). Тип соединения — точка к точке. Информация от периферийного передающего узла поступает к другим периферийным узлам через центральный узел.

Центральный узел должен отличаться повышенной надежностью, поскольку выход его из строя останавливает всю сеть. Выход из строя периферийного узла или одного физического канала связи отключает только один сетевой узел и не влияет на работоспособность остальной сети.


 

ERP-системы. Планирование потребности в ресурсах.

Системы планирования потребностей в ресурсах определяют количество и время всех производственных ресурсов, необходимых, чтобы произвести конечную продукцию, заданную в графике выпуска продукции. Производственные ресурсы включают материалы и полуфабрикаты, покупные изделия, изделия собственного производства, персонал, финансы и производственные мощности.

На рис. 2.5 показаны основные элементы систем планирования потребностей в ресурсах. Здесь выясняется, можно ли получить необходимые материальные ресурсы от поставщиков и достаточны ли производственные мощности, чтобы обеспечить выполнение графика выпуска продукции. Если экономически обоснованные возможности недостаточны, то график должен быть изменен. После того как определено, что график выпуска продукции допустим, планы потребностей в материальных ресурсах и мощностях становятся ядром краткосрочного плана производства. Исходя из плана потребностей в материальных ресурсах службы снабжения формируют план поставок всех приобретаемых материальных ресурсов, а службы управления производством составляют оперативные производственные планы.

Ниже описываются два основных элемента систем планирования потребностей в ресурсах — планирование материальных потребностей (MRP) и планирование потребностей в мощностях (CRP).

Планирование материальных потребностей базируется на том, что они определяются как зависимые. Спрос на ресурсы определяется как сумма потребностей по всем видам продукции, которые должны быть произведены.

Подсистема MRP выполняет следующие функции:

— воспринимает информацию MPS (графика выпуска продукции - Master Production Scheduling);

— рассчитывает на основе MPS потребности в материалах, полуфабрикатах, DCE по интервалам планового горизонта;

— уменьшает эти потребности для тех материальных ресурсов, которые есть в запасах;

— строит график заказов на приобретение и производство в планируемом периоде.

MRP обеспечивает управленцев информацией, которая позволяет выдерживать сроки поставки продукции заказчикам и обеспечивает своевременность выполнения внутренних заказов в ходе производственного процесса.

Подсистема CRP выбирает информацию о заказах, порожденную в планах MRP, и приписывает заказы к рабочим местам в соответствии с маршрутными технологиями. В маршрутных технологиях задана последовательность производственных процессов для каждого заказа. Затем информация о партиях материальных ресурсов преобразуется в данные о нагрузке на мощности на основе норм затрат труда и времени работы оборудования. Затем составляются графики нагрузки по всем заказам для каждого рабочего  места. Если мощность достаточна по всем рабочим местам во всех временных периодах, то график MPS утверждается. Если нет, то должно быть выяснено, нельзя ли изменить мощности каким-либо рациональным способом — за счет сверхурочных, установки дополнительного оборудования или передачей заказов на сторону по субконтракту. Если таких возможностей нет, то необходимо пересмотреть маршруты с целью снижения нагрузки на «узкие места» или пересмотреть график выпуска с точки зрения изменения в первую очередь сроков запуска и, если возможно, сроков выпуска.


 

12

Концепция MRP, MRP-2

На предприятиях со сложным многономенклатурным производством, была основной задачей является расчет материальных потребностей на производственную программу. 

Ранние системы, решавшие эту задачу, получили название MRP (Material Requirements Planning — «Планирование материальных потребностей»). Постепенно был совершен переход от автоматизации управления производством на уровне  локальных задач к интегрированным системам, охватывающим выполнение всех функций управления производством. Итогом этого процесса явились системы, получившие название MRP-2 (Manufacturing Resource Planning — «Планирование производственных ресурсов»).

Бизнес-планирование. Процесс формирования плана предприятия наиболее высокого уровня. Планирование долгосрочное, план составляется в стоимостном выражении. Наименее формализованный процесс выработки решений.

Планирование продаж и деятельности предприятия в целом. Бизнес-план преобразуется в планы продаж основных видов продукции (как правило, от 5 до 10). При этом производственные мощности могут не учитываться или учитываться укрупненно. План носит среднесрочный характер.

Планирование производства. План продаж по видам продукции (семейства однородной продукции) преобразуется в объемный или объемно-календарный план производства видов продукции. В этом плане впервые в качестве планово-учетных единиц выступают изделия, но представления о них носят усредненный характер. Например, речь может идти обо всех легковых переднеприводных автомобилях, выпускаемых на заводе, без уточнения моделей. Часто этот модуль объединяется с предыдущим.

Формирование графика выпуска продукции. План производства преобразуется в график выпуска продукции. Как правило, это среднесрочный объемно-календарный план, задающий количества конкретных изделий (или партий) со сроками их изготовления.

Планирование потребностей в материальных ресурсах. В ходе планирования на этом уровне определяются, в количественном выражении и по срокам, потребности в материальных ресурсах, необходимых для обеспечения графика выпуска продукции.

Планирование производственных мощностей. Как правило, в этом модуле выполняются расчеты по определению и сравнению располагаемых и потребных производственных мощностей. С небольшими изменениями этот модуль может применяться не только для производственных мощностей, но и для других видов производственных ресурсов, способных повлиять на пропускную способность предприятия. Подобные расчеты, как правило, производятся после формирования планов практически всех предыдущих уровней с целью повышения надежности системы планирования. Иногда решение данной задачи включают в модуль соответствующего уровня.

Оперативное управление производством. Здесь формируются оперативные планы-графики. В качестве планово-учетных единиц могут выступать детали (партии), сборочные единицы глубокого уровня, детале-(партие) операции и т. п. Период, охватываемый планированием, невелик (от нескольких дней до месяца).

 

Концепции ERP.

«Планирование ресурсов предприятия» (Enterprise Resource Planning — ERP). Системы этого класса в большей степени ориентированы на работу с финансовой информацией для решения задач управления большими корпорациями с разнесенными территориально ресурсами. Сюда включается все, что необходимо для получения ресурсов, изготовления продукции, ее транспортировки и расчетов по заказам клиентов.

Системы типа ERP дополнены следующими функциональными модулями:

— прогнозирования спроса;

— управления проектами;

— управления затратами;

— управления составом продукции;

— ведения технологической информации;

— модули управления кадрами и финансовой деятельностью предприятия.

Прогнозирование спроса. Оценка будущего состояния или поведения внешней среды или элементов производственного процесса. Цель — оценить требуемые параметры в условиях неопределенности. Недостаток информации связан, как правило, с временным фактором. Прогнозирование может носить как самостоятельный характер, так и, предшествуя планированию, представлять собой первый шаг в решении задачи планирования.

Управление проектами и программами. В производственных системах, предназначенных для выпуска сложной продукции, собственно производство является одним из этапов полного производственного цикла. Ему предшествуют проектирование, конструкторская и технологическая подготовка, а произведенная продукция подвергается испытаниям и модификации. Для сложной продукции характерны: большая длительность цикла, большое количество предприятий-смежников, сложность внутренних и внешних связей. Отсюда следует необходимость управления проектами и программами в целом и включение соответствующих функций в систему управления.

Ведение информации о составе продукции. Обеспечивает информацией требуемого уровня  о продукции, изделиях, сборочных единицах, деталях, материалах, а также об оснастке и приспособлениях.

Ведение информации о технологических маршрутах. Обеспечивает информацией о последовательности операций, входящих в технологические маршруты, длительности операций и количестве исполнителей или рабочих мест, требуемых для их выполнения.

Управление затратами. Обеспечивает связь между управлением производством и управлением финансовой деятельностью с помощью планирования, учета, контроля и регулирования затрат (плановых и фактических). Решается в различных разрезах — по подразделениям, проектам, типам и видам продукции, изделиям и т. п. 

Управление финансами. Обеспечивает управление финансовой деятельностью. В нее входят четыре основные подсистемы — «Главная бухгалтерская книга», «Расчеты с заказчиками», «Расчеты с поставщиками», «Управление основными средствами». 

Управление кадрами. Решает задачи управления кадровыми ресурсами предприятия. Задачи, решаемые в подсистеме управления кадрами, связаны с набором, штатным расписанием, переподготовкой, продвижением по службе, оплатой и т. п.

 

Технические средства АСУ.

Основу технического обеспечения автоматизированных систем составляют компьютеры, являющиеся ядром любой информационной системы.

В настоящее время существует  следующая классификация архитектур компьютеров:

— архитектура с одиночным потоком команд и одиночным потоком данных (SISD);

— архитектура с одиночным потоком команд и множественным потоком данных (SIMD);

— архитектура с множественным потоком команд и одиночным потоком данных (MISD);

— архитектура с множественным потоком команд и множественным потоком данных (MIMD).

К классу SISD относят современные однопроцессорные системы. В этой архитектуре центральный процессор работает с парами «атрибут-значение». Атрибут (метка) используется для локализации соответствующего значения в памяти, а одиночная команда, обрабатывающая содержимое накопителя (регистра) и значение, выдает результат. В каждой итерации из входного потока данных используется только одно значение.

К классу SIMD относят большой класс архитектур, основная структура которых состоит из одного контроллера, управляющего комплексом одинаковых процессоров.

К классу MISD может быть отнесена единственная архитектура — конвейер, но при условии, что каждый этап выполнения запроса является отдельной командой.

К классу MIMD, хотя и не всегда однозначно, относят следующие конфигурации:

— мультипроцессорные системы;

— системы с мультиобработкой;

— вычислительные системы из многих машин;

— вычислительные сети.

В настоящее время наиболее распространенным типом архитектуры является архитектура процессоров, выпускаемых фирмой Intel, поддерживаемая большинством производителей персональных компьютеров и программного обеспечения.

Архитектура Intel не является единственной. Второй микропроцессорной архитектурой, на которой строятся персональные компьютеры, является архитектура, предложенная фирмой Apple, которая в свое время была первой фирмой, начавшей выпуск персональных компьютеров. Сейчас около 10% персональных компьютеров в мире — это компьютеры Macintosh (или сокращенно Маc), выпускаемые фирмой Apple.

Базовым аппаратным средством уровня непосредственного цифрового управления является автономное программируемое устройство сбора и обработки информации — промышленный контроллер.

В отличие от персонального компьютера он рассчитан на решение ограниченного круга задач и должен обладать следующими основными свойствами:

1) работа в режиме реального времени, т.е. обеспечение высокой реактивности на запросы обслуживания со стороны объекта управления;

2) повышенные требования к надежности функционирования; 

3) автоматический перезапуск в случае «зависания» программы;

4) конструкция, приспособленная для работы в цеховых («полевых») условиях (повышенные вибрации, электромагнитные помехи, запыленность, перепады температуры, иногда взрывоопасность);

5) возможность встраивания дополнительных блоков управляющей, регистрирующей, сопрягающей аппаратуры, что помимо специальных конструкторских решений обеспечивается использованием стандартных шин и увеличением числа плат расширения;

6) минимальное потребление энергии и рассеяние тепла в условиях ограниченной мощности источника питания и отсутствия элементов принудительной вентиляции и охлаждения.

Использование PLC как в закрытых промышленных объектах (цех, участок, склад и т.д.), так и на открытых площадках (транспортеры, дозирующие устройства и т.д.), предполагает расширенный температурный диапазон, влияние атмосферных и механических воздействий, а также высокий уровень электромагнитных помех, возникающих от кабелей электропитания, блуждающих токов в арматуре зданий и т.д.

Основные требования к программному обеспечению для PLC:

— автономность;

— поддержка процессов сбора, анализа информации и управления, а также локальных баз данных в реальном времени;

— возможность дистанционного управления со стороны центрального диспетчерского пункта (станции);

— сетевая поддержка.

Программное обеспечение распределенной системы (компьютер-PLC) включает следующие основные компоненты:

— тестовое программное обеспечение;

— базовое программное обеспечение;

— прикладное технологическое программное обеспечение.

 

Топология локальной промышленной сети.

Топология сети описывает способ объединения различных сетевых устройств. Выбор топологии влияет на характеристики сети: способ доступа к сети, возможность ее расширения, надежность. Основными топологиями являются: шина (bus), кольцо (ring), звезда (star).

При построении сетей используются два варианта подключения сетевых устройств: радиальное и магистральное:

— радиальное соединение между двумя сетевыми устройствами (компьютером, PLC и т.п.) называется соединением точка к точке (point to point interface);

— магистральное соединение сетевых устройств, при котором сетевые устройства независимо выходят на общую линию передачи, называется «многоточечным» соединением (multipoint).

Топология «Шина» (магистраль). Наиболее простые и распространенные сети. Для объединения группы устройств в сеть здесь применяется единый (магистральный) кабель, имеющий несколько промежуточных ответвлений, которые используются для соединения магистрального провода с сетевыми устройствами (рис.1.4). Тип соединения — многоточечный. Каждое сетевое устройство может передавать данные только в том случае, если другие «молчат».

Сеть с такой топологией отличается легкостью расширения, однако чем больше абонентских узлов в сети, тем ниже ее производительность. Выход из строя магистрального кабеля влечет за собой остановку всей сети, однако выход из строя одного узла не нарушает работоспособности сети.

Топология «Кольцо». Информация передается от узла к узлу последовательно по физическому кольцу. Каждый узел передает информацию только одному из узлов (рис.1.5). Тип соединения — точка к точке. Приемный узел выступает в роли повторителя, регенерируя полученную информацию.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях, где передаваемые данные получают все узлы сети. На различных участках сети могут использоваться разные виды физической передающей среды. Выход из строя линии связи приводит к отказу сети.

Топология «Звезда». Все сетевые узлы подключены собственным физическим каналом связи к центральному концентратору или промышленному контроллеру (рис.1.6). Тип соединения — точка к точке. Информация от периферийного передающего узла поступает к другим периферийным узлам через центральный узел.

Центральный узел должен отличаться повышенной надежностью, поскольку выход его из строя останавливает всю сеть. Выход из строя периферийного узла или одного физического канала связи отключает только один сетевой узел и не влияет на работоспособность остальной сети.


 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.041 с.