Изменчивость микроорганизмов — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Изменчивость микроорганизмов

2022-09-11 37
Изменчивость микроорганизмов 0.00 из 5.00 0 оценок
Заказать работу

Стадии

Переход реципиентных клеток в состояние компетентности.

В состоянии компетентности бактерии вырабатывают особый низкомолекулярный белок (фактор компетентности).
При наличии факторов компетентности в клетках наблюдаются следующие изменения:
- снижается общая интенсивность метаболизма;
- изменяется клеточная стенка и цитоплазматическая мембрана.
Стенка становится более пористой. Наблюдаются дополнительные впячивания мембраны внутрь клеток, что обеспечивает приближение присоединенного к ней нуклеоида к клеточной поверхности и облегчает взаимодействие между донорной и реципиентной ДНК.

R -плазмиды, функции, строение. Пути передачи. Механизм множественной лекарственной устойчивости.

R-плазмиды (от resistance - устойчивость) представляет собой двуспиральную молекулу ДНК, содержащую гены, детерминирующие устойчивость к антибиотикам. R-плазмиды могут передаваться от одних бактерий другим при трансформации, трансдукции и конъюгации. Передача R-плазмид от одних бактерий к другим способствует возникновению антибиотикоустойчивых штаммов патогенных и условно-патогенных бактерий, что затрудняет химиотерапию вызываемых ими заболеваний.

В ней заключены гены, ответственные за механизм репликации и перенос свойств резистентности в клетку- реципиент (фактор переноса устойчивости, или RTF), а также гены, определяющие устойчивость к конкретному антибиотику.

R-плазмиды кодируют устойчивость к лекарственным препаратам (например, к антибиотикам и сульфаниламидам, хотя некоторые детерминанты устойчивости правильнее рассматривать как связанные с транспозонами), а также к тяжёлым металлам. R-плазмиды включают все гены, ответственные за перенос факторов устойчивости из клетки в клетку.

Пути передач

R-фактор передаётся при трансдукции и обычно делении клетки. Некоторые R-плазмиды могут передаваться при конъюгации бактерий, то есть являются конъюгативными. Возможна передача R-плазмид между бактериями различных видов, родов и даже семейств. Так, RP1, плазмида, ответственная за устойчивость к ампициллину, тетрациклину и канамицину у бактерий рода Pseudomonas семейства Pseudomonadaceae может передаваться кишечной палочке E. coli, относящейся к семейству Enterobacteriaceae.

Механизм превращения R+-клетками антибиотиков в неактивную форму связан с действием на них специфических ферментов, кодируемых R-плазмидой.

С действием R-плазмид часто бывает связан тот факт, что некоторые бактериальные заболевания с трудом поддаются лечению при помощи известных на данный момент антибиотиков.

Подвижные генетические элементы: транспозоны и Is - последовательности. Основные признаки.

В состав бактериального генома, как в бак­териальную хромосому, так и в плазмиды, входят подвижные генетические элементы. К подвижным генетическим элементам от­носятся вставочные последовательности и транспозоны.

Вставочные (инсерционные) последова­тельности IS-элементы — это участки ДНК, способные как одно целое перемещаться из одного участка репликона в другой, а также между репликонами. Они содержат лишь те гены, которые необходимы для их собственного перемещения — транс­позиции: ген, кодирующий фермент транспозазу, обеспечивающую процесс исключения IS-элемента из ДНК и его интеграцию в но­вый локус, и ген, детерминирующий синтез репрессора, который регулирует весь процесс перемещения.

Транспозоны — это сегменты ДНК, облада­ющие теми же свойствами, что и IS-элементы, но имеющие структурные гены, т. е. гены, обеспечивающие синтез молекул, обладаю­щих специфическим биологическим свойс­твом, например токсичностью, или обеспечи­вающих устойчивость к антибиотикам.

Перемещаясь по репликону или между реп­ликонами, подвижные генетические элемен­ты вызывают:

1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются.

2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому.

4. Распространение генов в популяции бак­терий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процес­сам среди микробов.

Метод молекулярных зондов

Метод ДНК-зондов позволяет обнаруживать нуклеиновые кислоты (в том числе и вирусные) в любых материалах, включая патологический материал от больных животных. Он основан на способности одноцепочечных молекул нуклеиновых кислот соединяться в двухцепочечные, если они взаимно комплементарны.

Любой вирус включает одну специфичную для него молекулу ДНК (или РНК) со строго определенной последовательностью нуклеотидов. Чтобы обнаружить вирусную нуклеиновую кислоту в материале от больного, можно воспользоваться ее способностью после разделения цепей (если она двухцепочная) образовывать снова двойную цепь с комплементарной ей молекулой нуклеиновой кислоты, предварительно как-либо помеченной.

Такая меченая одноцепочная молекула нуклеиновой кислоты, комплементарная молекуле нуклеиновой кислоты определенного вируса, называется ДНК-зондом. Для каждого вида вируса зонд готовят заранее и вводят в него метку или в виде атомов радиоактивного фосфора (Р32), или в виде биотина, дающего изменение цвета, что позволяет обнаруживать зонд, а значит, и вирусную нуклеиновую кислоту, с которой зонд соединился в результате молекулярной гибридизации.

Методика обнаружения вирусной нуклеиновой кислоты в патологическом материале включает следующие этапы:

1) получение ДНК-зонда и его метка;

2) подготовка патологического материала к исследованию;

3) молекулярная гибридизация и удаление одноцепочечных нуклеиновых кислот;

4) обнаружение двухцепочных нуклеиновых кислот, включивших в себя зонд (по метке);

5) интерпретация результатов.

Получение ДНК-зонда - наиболее трудная задача. Она сводится к тому, что ДНК соответствующего вируса, на который хотят получить ДНК-зонд, разрезают на фрагменты (с помощью рестриктаз). Методом электрофореза выделяют тот фрагмент, который неизменно обнаруживается в ДНК вирусов разного происхождения и является наиболее консервативным.

Из бактерии кишечной палочки выделяют те плазмиды, которые содержат ген фермента, разрушающего какой-либо антибиотик (например, ген пенициллиназы). Плазмидные ДНК с вирусными вставками вводят в бактерии, которые затем клонируют в селективной среде, содержащей антибиотик, к которому бактерии стали нечувствительными. Накапливают массу бактерий и из них выделяют плазмидную ДНК (путем удаления белка).

Выделенную плазмидную ДНК, содержащую вирусные вставки, метят радиоактивным фосфором (Р32) и денатурируют путем нагрева до 80°С. Образовавшиеся одноцепочные молекулы ДНК будут иметь фрагменты, комплементарные фрагментам одной из нитей ДНК вируса. Это и есть ДНК-зонд.

Для получения ДНК-зонда на вирусную РНК выбирают на основе анализа генетической карты вируса необходимый фрагмент РНК, выделяют его, а затем путем обратной транскрипции получают ДНК-фрагмент, который и встраивают в плазмиду. Обычно ДНК-зонд готовят на каждый вирус заранее, нарабатывают его и хранят до использования.

С помощью ДНК-зонда можно обнаружить вирусные нуклеиновые кислоты в любом материале от больных животных. Для этой цели пригоден как свежий материал (ткани, смывы, кровь), так и высушенный, мороженный и даже частично разложившийся.

Из подлежащего исследованию материала выделяют ДНК, обрабатывают препаратами, разрушающими белки. После полного удаления белков осаждают ДНК при температуре -70°С, осадок отмывают спиртом и подвергают денатурации путем кипячения или обработки щелочью.

Полученные пробы из разных исследуемых материалов наносят на нейлоновую мембрану(фильтр), расчерченную простым карандашом на квадраты (для каждого материала свой номер квадрата). Также наносят отрицательный и положительный контроли. Зонд наносят на стекло, которое затем накладывают на фильтр так, чтобы получился контакт зонда с исследуемым материалом, и 20 мин выдерживают при температуре 80°С, после чего температуру снижают до 55°С, при которой идет гибридизация (около 2 часов). Затем фильтр отделяют от стекла, промывают, сушат и удаляют с него все несвязавшиеся одноцепочные молекулы ДНК, обрабатывая додецилсульфатом и цитратом натрия. Методом авторадиографии устанавливают, в каких квадратах выявляется радиоактивность, и визуально оценивают ее интенсивность. Потемнение фотопленки, контактирующей с определенными квадратами, свидетельствуют о наличии в материалах этих квадратов искомой нуклеиновой кислоты вируса.

Кратко метод ДНК-зондов сводится к следующему:

1. Получение одноцепочного фрагмента ДНК определенного вируса (ДНК-зонда) и его метка.

2. Выделение и патологического материала нуклеиновых кислот и их денатурация (расплетение двухцепочных молекул на одноцепочные).

3. Контакт образовавшихся одноцепочных молекул ДНК (или РНК) с ДНК-зондом при 55˚С, приводящий к образованию двухцепочных молекул (молекулярная гибридизация) в случаях их взаимной комплементарности.

4. Удаление всех негибридизированных одноцепочных молекул нуклеиновых кислот.

5. Обнаружение (по метке) образовавшихся двухцепочных молекул нуклеиновых кислот, которые и будут указывать на наличие в материале того вируса, на который был получен ДНК-зонд.

Достоинства: Высокие чувствительность и специфичность, универсальность, отсутствие необходимости в стерильной работе и математической обработке материалов.

Недостатки: Относительная технологическая сложность, и трудность получения ДНК-зонда.

11. Полимеразная цепная реакция (ПЦР). Принцип метода, достоинства.

В основе ПЦР (метода амплификации ДНК in vitro) лежит способность однонитчатой ДНК (праймера) достраиваться и взаимодействовать по принципу комплементарности с ДНК искомого возбудителя при ее наличии в исследуемом материале.

Компоненты реакции:

1) исследуемый материал, содержащий молекулу ДНК микроорганизмов (испражнение, мокрота, выделенная чистая культура микроба и др.);

2) праймеры – короткие искусственно синтезированные молекулы ДНК, идентичные соответствующим участкам определяемой ДНК микроба;

3) фермент (ДНК- полимераза), обеспечивающий достраивание второй цепи ДНК;

4) смесь нуклеотидов – строительный материал, из которого синтезируется достраиваемая ферментом цепь ДНК;

Каждый цикл амплификации состоит из 3-х этапов:

1) денатурация ДНК, находящуюся в образце. Для этого нагревают реакционную смесь при t 93-950 С, в результате чего двухцепочечные молекулы ДНК расплетаются с образованием двух одноцепочечных;

2) отжиг – присоединение праймеров и ДНК микроба, что происходит в соответствии с правилами комплементарности при t 50-65°C.

3) элонгация – синтез второй цепи ДНК при участии полимеразы при t 72°C (рис.22).

В дальнейшем этапы денатурации, отжига и элонгации многократно повторяются. На каждом цикле количество синтезированных копий фрагмента ДНК определяемого микроба удваивается. Благодаря этому происходит многократное удвоение специфических фрагментов ДНК. Продукты синтеза первого цикла амплификации служат матрицей для второго цикла, а продукты синтеза второго цикла - матрицей для третьего цикла амплификации. Цикл амплификации проводится в термо-циклере (амплификаторе).

Достоиннства ПЦР:

1) высокая чувствительность и специфичность;

2) быстрота (применяется для экспресс-диагностики);

3) возможность идентификации труднокультивируемых микроорганизмов (внутриклеточных паразитов и персистирующих микроорганизмов);

4) возможность определения микроорганизмов непосредственно в клиническом материале без предварительного выделения чистой культуры.

 

 

Изменчивость микроорганизмов

Наследственность - способность воспроизводить себе подобных.

Изменчивость - различие в свойствах между особями одного вида. Различают изменчивость наследственную и ненаследственную (модификационной)

Ненаследственная или фенотипическая изменчивость (модифика­ции) не затрагивает геном микроба, не передается по наследству. Мо­дификации возникают в ответ на изменяющиеся условия окружающей среды. При устранении фактора, вызвавшего модификацию, измене­ние исчезает.
Например, кишечная палочка только в присутствии лактозы продуцирует ферменты, разлагающие этот углевод. Стафило­кокки образуют фермент, разрушающий пенициллин, только в присут­ствии этого антибиотика. Примером модификаций является также образование L-форм бактерий под действием пенициллина и возврат к исходной форме после прекращения его действия.

Наследственная или генотипическая изменчивость возникает в ре­зультате изменения самого генома. Изменение генома может наступить в результате мутаций или рекомбинаций.

Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу.

Стандартное проявление модификации- распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении S R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей

2.Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуре ДНК.

Одновременно у бактерий имеются различные механизмы репарации мутаций, в том числе с использованием ферментов- эндонуклеаз, лигаз, ДНК- полимеразы.

Генетические рекомбинации- изменчивость, связанная с обменом генетической информации.

Генетические рекомбинации могут осуществляться путем трансформации, трансдукции, конъюгации, слияния протопластов.

1.Трансформация- захват и поглощение фрагментов чужой ДНК и образование на этой основе рекомбинанта.
2.Трансдукция- перенос генетического материала фагами (умеренными фагами- специфическая трансдукция).

3.Конъюгация- при непосредственном контакте клеток. Контролируется tra (transfer) опероном. Главную роль играют конъюгативные F- плазмиды.


Фенотипическое смешивание - при заражении клетки близкородственными вирусами с образованием вирионов с гибридными капсидами, кодируемыми геномами двух вирусов.

Популяционная изменчивость вирусов связана с двумя разнонаправленными процессами - мутациями и селекцией, связанными с внешней средой как индуктором мутаций и фактором стабилизирующего отбора. Гетерогенность вирусных популяций- адаптационный генетический механизм, способствующий пластичности (устойчивости, приспособляемости) популяций, фактор эволюции и сохранения видов во внешней среде.

Генофонд вирусных популяций сохраняется за счет нескольких механизмов:

- восстановления изменчивости за счет мутаций;

- резервирующих механизмов (возможность перехода любых, даже негативных мутаций в следующую генерацию)- комплементация, рекомбинация;

- буферных механизмов (образование дефектных вирусных частиц, иммунных комплексов и др.), способствующие сохранению вируса в изменяющихся внешних условиях.

Факторы, вызывающие эту изменчивость, разнообразны. К ним относятся состав питательной среды, рН окружающей среды, концентрация минеральных солей, температура, ультрафиолетовые лучи, действие фагов, лекарственных и дезинфицирующих препаратов, различные химические соединения, ультразвук, ионизирующая радиация и многое другое.

 

3. Классификация мутаций бактерий по фенотипическим последствиям.

4. Механизмы передачи генетической информации. Трансформация. Трансдукция. Конъюгация.

Рекомбинация - процесс взаимодействия между молекулами ДНК, приводящий к формированию новой рекомбинантной молекулы, несущей признаки от бактерии-донора и от бактерии реципиента.

Конъюгация — однонаправленный перенос генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток.

1. В ходе конъюгации хромосома донора передается в реципиентную клетку. Затем участок донорской хромосомы (очень редко вся хромосома) рекомбинирует с гомологичным участком на хромосоме реципиентной клетки.

2. Реципиентные клетки, в которые передался участок ДНК донора называются трансконъюгантами.
Необходимое условие: наличие в клетке-доноре трансмиссивной плазмиды. Биологическая значимость – распространение резистентности бактерий к антибиотикам

 Конъюгация бактерий состоит в переходе генетического материала (ДНК) из клетки-донора («мужской») в клетку-реципиент («женскую») при контакте клеток между собой.
«Мужская» клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержащие F-фактора, являются «женскими»; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фактора значительно меньше хромосомы и содержит гены, контролирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначаемым F-(«женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота рекомбинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F-хромосома разрывается и передается с определенного участка (начальной точки) в клетку F-, продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъюгации бактерий, можно определять последовательность расположения генов в хромосоме. Иногда F-фактор может при выходе из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

При конъюгации происходит только частичный перенос генетического материала, поэтому ее не следует отождествлять полностью с половым процессом у других организмов.

Трансдукция - процесс переноса генетического материала от бактерии-донора к бактерии-реципиенту с помощью бактериофага
Специфическая - локализованная
Неспецифическая – общая
Абортивная –несостоявшаяся
Биологическая значимость – перенос генов токсигенности

С помощью генерализованной трансдукции можно переносить любые гены бактерий. Вначале бактериофагом заражают клетки бактерий, являющиеся донором бактериальных генов. Хромосома бактериофагов, осуществляющих генерализованную трансдукцию, после их проникновения внутрь клеток не может встраиваться в геном бактерий. При размножении бактериофагов внутри зараженных клеток, они индуцируют деградацию бактериальной хромосомы под действием собственных литических ферментов, захватывают отдельные гены бактерий в состав своей хромосомы и становятся носителями бактериальных генов. После чего бактериофаги могут передавать эти гены в новые клетки-хозяева, которые с помощью рекомбинации встраивают их в свою хромосому. Так образуются трансдуктанты.

1. Специализированная трансдукция позволяет переносить только определенные гены из донорских клеток.
2. Специализированная трансдукция осуществляется только умеренными бактериофагами, которые могут встраиваться в геном бактериальной клетки и переходить в состояние профага, а потом при исключении из хромосомы захватывать участок хромосомы донора.
3. Примером бактериофага, осуществляющего специализированную трансдукцию является бактериофаг λ.

С помощью специализированной трансдукции можно переносить только бактериальные гены, находящиеся в непосредственной близости от места встраивания бактериофага в хромосому бактерий. Умеренный бактериофаг встраивается в хромосому бактериальной клетки и затем при переходе в автономное состояние захватывает несколько хозяйских генов в состав своего генома. При последующем заражении новых бактериальных клеток бактериофаг вносит в них эти гены. Далее внесенные гены встраиваются в хромосому нового хозяина по участкам гомологии с помощью рекомбинации.

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмента ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента.
Неспецифическая трансдукция обусловлена включением ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая трансдукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привносятся новые гены, и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизогенией.

Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего продукта, такая трансдукция называется абортивной.

Трансформация Передача генетического материала между бактериями при помощи свободных фрагментов ДНК
Практическая значимость – основной метод генной инженерии

Условия, необходимые для успешной трансформации:
ДНК донора должна быть выделена из бактериальной культуры того же вида, что и реципиент(или близкородственного)
Участок трансформирующей ДНК должен сохранять двунитчатую суперспирализцию
Концентрация ДНК должна быть оптимальной
Клетки-реципиенты должны быть компетентными т.е. способными адсорбировать на своей поверхности ДНК донора и поглощать ее

Трансформация бывает хромосомная и плазмидная
Хромосомная трансформация характерна для грамположительных бактерий, например, Streptococcus pneumoniae, S. sanguis, B. subtilis, B. сereus, B. stearothermophilus, а также некоторых грамотрицательных бактерий.
Плазмидная – для грамположительных и грамотрицательных.

Стадии


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.074 с.