Глава 1. Лампы накаливания и энергосберегающие лампы — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Глава 1. Лампы накаливания и энергосберегающие лампы

2021-06-24 19
Глава 1. Лампы накаливания и энергосберегающие лампы 0.00 из 5.00 0 оценок
Заказать работу

1.1 Из истории создания ламп накаливания и энергосберегающих ламп

Лампы накаливания

Лампа накаливания — источник света, преобразующий энергию проходящего по спирали лампы электрического тока в тепловую и световую. Под вечер, когда сгущаются сумерки, мы привычно щелкаем выключателем, и под потолком загорается "маленькое солнце" – электрическая лампочка. И редко кто вспоминает при этом об изобретателе простого, надежного и удобного источника света. (Приложение2)

В 1809 году англичанин Уоррен де ла Рю изобретает первую лампу накаливания (с платиновой спиралью). (Приложение 3)

В 1854 году немец Генрих Гёбельразработал первую «современную» лампу: обугленную бамбуковую нить в вакуумном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. (Приложение 4)

В 1860 год английский химик и физик Джозеф Уилсон Суонпродемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно. (Приложение 5)

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумный сосуд. (Приложение 6)

В 1875 году В.Ф. Дидрихсонусовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически). (Приложение 7)

Во второй половине 1870-х годов американский изобретатель Томас Алва Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение. (Приложение 8)

В 1890-х годах А.Н. Лодыгин изобретает несколько типов ламп с нитями накаливания из тугоплавких металлов.

Строение ламп накаливания Лодыгин предложил применять в лампах нити из вольфрама и молибдена и закручивать их в форме спирали. Он предпринял первые попытки откачивать из лампы воздух, что сохранило нить от окисления и увеличило срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены газонаполненные лампы (с угольной нитью и заполненные азотом).

В конце 1980-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна).

В 1906г А.Н. Лодыгин продает патент на вольфрамовую нить компании GeneralElectric. В том же 1906году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

 

Энергосберегающие лампы

Энергосберегающая лампа — электрическая лампа, обладающая существенно большей светоотдачей (соотношением между световым потоком и потребляемой мощностью), например, в сравнении с классическими лампаминакаливания.

· Люминесцентная лампа:

Люминесцентная лампа, или люминесцентная лампа, представляет собой газоразрядную лампу с низким давлением ртутного пара, которая использует флуоресценцию для получения видимого света. Электрический ток в Газе возбуждает пары ртути, которые производят коротковолновый ультрафиолетовый свет, который затем заставляет светиться люминофорное покрытие на внутренней стороне лампы. Люминесцентная лампа преобразует электрическую энергию в полезный свет гораздо эффективнее, чем лампы накаливания. (Приложение 9)

Официально первая люминесцентная или, как ее еще называют, флуоресцентная лампа была создана в начале прошлого века инженером-изобретателем из США Питером Купером Хьюиттом, получившим на нее патент 17 сентября 1901 года. (Приложение 10)

Изобретенная и запатентованная Хьюиттом люминесцентная лампа содержала ртуть, пары которой нагревались проведенным через нее электротоком. Лампа Хьюитта была шарообразной формы и слегка изогнута, она давала больше света, чем лампы Лодыгина-Эдисона, но свет этот был голубовато-зеленым, неприятным для глаза. По этой причине первые ртутные лампы использовали только фотографы и они не получили широкого распространения.

Люминесцентная лампа в ее практически современном виде была создана группой немецких изобретателей во главе с Эдмундом Гермером, запатентовавшими свое изобретение 10 декабря 1926 года. Именно Гермеру пришла идея нанести флуоресцирующее покрытие на стеклянную поверхность лампы изнутри, которое преобразовывало ультрафиолетовое свечение ртутной лампы в белый свет, не режущий глаз. (Приложение 11)

Альберт Халл, инженер компании «GeneralElectric», разработал люминесцентную лампу с аналогичным покрытием к началу 1927 года, но компания была вынуждена приобрести патент Эдмунда Гермера, как оформившего его раньше.

С момента приобретения патента Гермера инженеры «GeneralElectric» активно принялись за совершенствование люминесцентных ламп, стараясь довести их до серийного производства. Для сокращения размеров колбы были созданы лампы круглой и U-образной формы инженером Эдвардом Хаммером в 1976 году. (Приложение 12)

Ввинчивающаяся лампа с магнитным балластом (SL) была создана компанией «Philips» в 1980 году — она стала первой люминесцентной лампой такого рода, способной конкурировать с лампами накаливания. Энергосберегающую лампу с электронным балластом (CFL) в 1985 году впервые продемонстрировал немецкий концерн «Osram».

· Светодиодная лампа:

Светодиодная лампа — это многокомпонентный прибор, при изготовлении которого не используют опасные вещества. За счёт чего он абсолютно безопасен. Конструкция лампы не очень сложная. То, что излучает свет - называют монокристаллом. Устанавливают его в металлической чашечке, которая является отражателем, потом заливают всё пластиком и светодиод готов. (Приложение 13)

Первое открытие, которое привело к появлению светодиодных ламп, было зафиксировано в 1907г. инженером из Англии Г.Д. Раундом. Причём, сделано это было абсолютно случайно. Раунд заметил, что вокруг детектора, с которым он работал, возникает свечение точечного контакта. (Приложение 14)

Дальнейшее развитие светодиоды получили в 1922 г. И серьёзно подошел к этому вопросу советский радиолюбитель 18-ти летний Олег Владимирович Лосев, который после многих экспериментов достиг внушительных положительных результатов. К сожалению этот изобретатель погиб в 1942 г. Но он успел получить четыре патента на практическое применение своих изобретений. (Приложение 15)

На основе «эффекта Лосева» в 1951 г. Курт Леговец, при участии физика В. Шокли, произвёл исследования по эффективным материалам для создания данного источника света. Их работа стала фундаментом новой отрасли – оптоэлектроники, появившейся в 1961 г.

Первые промышленные светодиоды в 1962 г. создал работник компании «Дженерал Электрик» Ник Холоньяк. Это были устройства с желто-зеленым и красным свечением. (Приложение 16)

 

1.2 Принцип работы энергосберегающих ламп и ламп накаливания

Лампа накаливания

Принцип действия ламп накаливания основан на преобразовании электрической энергии, проходящей через нить, в световую. Температура разогретой нити достигает 2600...3000 "С. Но нить лампы не плавится, потому что температура плавления вольфрама (3200...3400 °С) превышает температуру накала нити. Спектр ламп накаливания отличается от спектра дневного света преобладанием желтого и красного спектра лучей.
Колбы ламп накаливания вакуумные или заполняются инертным газом, в среде которого вольфрамовая нить накала не окисляется: азотом; аргоном; криптоном; смесью азота, аргона, ксенона.

Энергосберегающие лампы

Светодиодные лампы:

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Люминесцентные лампы:

На лампу подается напряжение, между электродами образуется разряд. Он проходит через инертный газ, смешанный с парами ртути, создавая движение быстрых электронов. Те, в свою очередь, сталкиваются с атомами ртути. В этом момент и образуется свечение. Есть одно «но», во время столкновения электронов с атомами ртути образуется ультрафиолетовый свет. Он не воспринимается человеческим глазом. Для этого и необходимо нанесение люминофора, которое начинает светиться под действием ультрафиолета.

 

1.3 Отличие, преимущества и недостатки энергосберегающих видов ламп: светодиодных и люминесцентных

Отличие светодиодных ламп от люминесцентных ламп

Люминесцентные источники света заполнены парами ртути, за счет чего колба начинает светиться в невидимом для глаза ультрафиолетовом диапазоне под действием электрического разряда между электродами. Ультрафиолет, воздействуя на люминофор, которым покрыта внутренняя поверхность колбы, вызывает светящийся эффект различных оттенков.

Для запуска и поддержания свечения применена пускорегулирующая аппаратура. Используются электромагнитные и электронные балласты, выполненные в виде отдельных блоков или смонтированные в патронах ламп.

Светодиод работает по-другому. Под воздействием протекающего тока полупроводниковый диодный переход начинает излучать свет, его цвет всегда синий. Для получения оттенков свечения излучающие кристаллы покрывают слоем люминофора.

Различие с люминесцентной лампой заключается в том, что в светодиоде никаких дополнительных преобразований энергии не происходит, за счет этого коэффициент полезного действия таких ламп выше.

 

Преимущество и недостатки светодиодных от люминесцентных ламп

· Срок службы

Если сравнить светодиодные и люминесцентные лампы, первые работают хуже в условиях повышенной температуры. Как только температура воздуха превышает отметку в +30 ˚С, им становится сложнее охлаждаться. Из-за этого их срок службы значительно уменьшается. Такие лампы нельзя устанавливать рядом с приборами для обогрева помещения и горячими поверхностями.

Полезно знать! Люминесцентные лампы подходят для теплых помещений, а светодиодные — наоборот. Зато у последних минимальный нагрев корпуса при работе, что позволяет устанавливать их вблизи с пожароопасными материалами. Для справки: люминесцентные во время сбоя работы стартера могут нагреваться до 200 ˚С, а светодиодные не превышают температуру 40-50 ˚С.

· Уровень мерцания

Преимущество светодиодных светильников перед люминесцентными лампами — отсутствие мерцания. У первых его нет вообще, а вторые способны испускать мерцание со средней частотностью от 50 до 120 Гц. Эта проблема решаема покупкой более современных моделей. У люминесцентных лампочек с качественным электронно-пускорегулирующим аппаратом мерцание сводится к минимальным показателям или к нулю. Вы можете не обращать внимания на мерцание, однако оно может пагубно сказываться на зрении.

· Яркость

Люминесцентные лампы подвержены старению. К концу срока эксплуатации их яркость снижается до 50%. Это происходит из-за изнашивания структурных составляющих лампы: электродов, люминофорового напыления. Если концы трубки почернели, а яркость уменьшилась — лампочку скоро придется менять. Обратите внимание, что из-за ртути утилизировать такие лампочки нужно в специальные контейнеры.

Поток яркости у LED-ламп снижается на 15% спустя 2500-3000 часов. Такое колебание почти незаметно и никак не сказывается на освещенности помещения. Из-за перегрева яркость может снизиться на 80%. А если лампочка эксплуатируется в условиях повышенной температуры и постоянно перегревается, то световой кристалл может сгореть.

· Влияние на здоровье

Из-за содержания в люминесцентных лампах ртути (до 3-7 мг) вокруг них возникает много мифов касаемо вреда для здоровья. На самом деле опасность возникает при разбивании ламп и испарении ртути. В этом случае техника безопасности точно такая же, как и при разбивании ртутного градусника: ртуть нужно аккуратно собрать и поместить в емкость с раствором марганцовки, а все поверхности вымыть с раствором из мыла и соды. Помните, что ртуть не испаряется при температуре ниже 18 ˚С.

Мерцание в 100-120 Гц нежелательно для людей с такими заболеваниями, как:

Ø аутизм;

Ø волчанка;

Ø эпилепсия;

Ø болезнь Лайма;

Ø фотосенсибилизация;

Ø склонность к головокружениям;

Ø синдром хронической усталости.

Вопреки расхожему мнению, ультрафиолетовый свет от лампочек не вызывает меланомы, заболеваний сетчатки и катаракты. Соответствие требованиям охраны труда позволяет избежать негативного влияния мерцания и ультрафиолета на человека. Лампочки должны быть рассредоточены по помещению в соответствии с нормами, то же самое касается и уровня их яркости, мерцания, УФ-излучения и удаленности от человека.

Что касается LED-ламп, то из-за отсутствия мерцания они никак не влияют на здоровье. Их уровень опасности для зрения сведен к нулю за счет используемой в оболочке оптики. Она не позволяет световому лучу навредить сетчатке и за счет этого снимает нагрузку на зрение. Плюс, ее можно утилизировать любым удобным вам способом.

Итоги:

Преимущества люминесцентных ламп:

· долгий срок службы;

· демократичная стоимость;

· низкий уровень энергопотребления;

· работает в помещениях с высокой температурой.

К числу недостатков можно отнести мерцание, сложности с утилизацией, потенциальный вред для здоровья, нагрев корпуса и снижение светового потока.

Преимущества светодиодных лампочек:

· корпус не нагревается;

· теряют малый процент яркости;

· экологичны и безопасны для здоровья;

· максимальный срок службы среди ламп;

· потребляют минимальное количество энергии;

· работают в помещениях с низкой температурой;

· могут работать рядом с легковоспламеняющимися веществами.

Главный недостаток — высокая стоимость. У низкокачественных лампочек могут вырабатываться высокие пульсации, а также присутствовать дефекты цветового спектра

 

1.4В чем преимущества и недостатки энергосберегающих ламп, по сравнению с традиционными лампами накаливания

Преимущества и недостатки энергосберегающих ламп

Преимущества:

· Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше, чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.

· По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем в 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке).

· Благодаря высокому коэффициенту полезного действия у энергосберегающих ламп, вся затраченная электроэнергия преобразуется в световой поток, при этом энергосберегающие лампы выделяют очень мало тепла (что актуально при нынешнем аномально жарком лете). В некоторых люстрах и светильниках опасно использовать обычные лампочки накаливания, из-за того что они выделяя большое количества тепла могут расплавить пластмассовую часть патрона, прилегающие провода или сам корпус, что в свою очередь может привести к пожару. Поэтому энергосберегающие лампы просто необходимо использовать в светильниках, люстрах и бра с ограничением уровня температуры.

· В обычной лампе накаливания свет идет только от вольфрамовой спирали. Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше распространяется по помещению.

· Благодаря различным оттенкам люминофора, покрывающего корпус лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть мягкий белый свет, холодный белый, дневной свет, и т.д.

 

Недостатки:

· Энергосберегающие лампы имеют также и недостатки: фаза разогрева у них длится до 2 минут, то есть, им понадобится некоторое время, чтобы развить свою максимальную яркость.

· Другим недостатком энергосберегающих ламп является то, что человек может находиться от них на расстоянии не ближе, чем 30 сантиметров. Из-за большого уровня ультрафиолетового излучения энергосберегающих ламп при близком расположении к ним может быть нанесен вред людям с чрезмерной чувствительностью кожи и тем, кто подвержен дерматологическим заболеваниям. Также не рекомендуется использовать в жилых помещениях энергосберегающие лампы мощностью более 22 ватт, т.к. это тоже может негативно отразиться на людях, чья кожа очень чувствительна.

· Еще одним недостатком является то, что энергосберегающие лампы неприспособлены к функционированию в низком диапазоне температур (-15-20ºC), а при повышенной температуре снижается интенсивность их светового излучения.

· Срок службы энергосберегающих ламп ощутимо зависит от режима эксплуатации, в частности, они «не любят» частого включения и выключения. Конструкция энергосберегающих ламп не позволяет использовать их в светильниках, где есть регуляторы уровня освещенности. При снижении напряжения в сети более чем на 10% энергосберегающие лампы просто не зажигаются.

· Еще одним недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена.

 

Преимущества и недостатки ламп накаливания

Преимущества:

· налаженность в массовом производстве;

· малая стоимость;

· небольшие размеры;

· отсутствие пускорегулирующей аппаратуры;

· нечувствительность к ионизирующей радиации;

· чисто активное электрическое сопротивление (единичный коэффициент мощности);

· быстрый выход на рабочий режим;

· невысокая чувствительность к сбоям в питании и скачкам напряжения;

· отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;

· возможность работы на любом роде тока;

· нечувствительность к полярности напряжения;

· возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

· отсутствие мерцания и гудения при работе на переменном токе;

· непрерывный спектр излучения;

· приятный и привычный в быту спектр;

· устойчивость к электромагнитному импульсу;

· возможность использования регуляторов яркости;

· устойчивы к конденсату.

Недостатки:

· низкая световая отдача;

· относительно малый срок службы;

· хрупкость, чувствительность к удару и вибрации;

· бросок тока при включении (примерно десятикратный);

· при термоударе или разрыве нити под напряжением возможен взрыв баллона;

· резкая зависимость световой отдачи и срока службы от напряжения лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 25 Вт-100 °C, 40 Вт - 145 °C, 75 Вт - 250 °C, 100 Вт - 290 °C, 200 Вт - 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

· нагрев частей лампы требует термостойкой арматуры светильников;

· световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4%.

· Включение электролампы через диод, что часто применяется с целью продления ресурса на лестничных площадках, в тамбурах и прочих затрудняющих замену местах, ещё больше усугубляет её недостатки.

 

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.