Журнал МЭД и бизнесмены-разрушители — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Журнал МЭД и бизнесмены-разрушители

2017-05-20 167
Журнал МЭД и бизнесмены-разрушители 0.00 из 5.00 0 оценок
Заказать работу

 

Тщательнее всего следует выбирать врагов.

Оскар Уайльд. Портрет Дориана Грея

 

Только святой способен не сойти с ума, видя, как в соседней лаборатории его опережают в гонке за результатами.

Джеймс Уотсон. Страсть к ДНК. Гены, геномы и общество

 

И вот я снова обидел геномную элиту – объявил, что собираюсь секвенировать геном человека с беспрецедентной скоростью. Как только сидящие на госфинансировании ученые решили, что не хотят иметь никакого дела ни со мной, ни с моими сотрудниками, заявка TIGR на государственные гранты была отвергнута, а уже полученный немедленно был отозван Фрэнсисом Коллинзом. Вскоре стало понятно, что моя попытка запустить проект генома человека, объединив усилия с научной верхушкой, обречена на провал.

В США решающая роль в распределении финансирования исследований генома принадлежит НИЗ. Заявки на гранты проходят многомесячные процедуры редактирования и уточнения, затем поступают в НИЗ «рецензентам» – десяти или более известным специалистам в данной области. Понятно, что в новом направлении исследований «запас» экспертов весьма небольшой. Но даже и в традиционной отрасли ведущие ученые могут оказаться слишком загружены, чтобы писать рецензии или глубоко вникать в проблему. В этих случаях формируются экспертные группы, члены которых оценивают заявки по шкале от 1,0 (отлично) до 5,0 (финансирование нецелесообразно). Как правило, заявки, получившие оценку 1,5, гранты не получают.

Чтобы заявка на грант провалилась, достаточно лишь, чтобы одному или больше из десятка рецензентов что-нибудь не понравилось – к примеру, тема исследования, сам исследователь, его учреждение или предлагаемый метод исследования. Рецензент может восхищаться ученым, подавшим заявку на грант, и высоко оценивать исследование, но конкуренция-то велика, и блокирование гранта конкурента повышает шанс финансирования лаборатории самого рецензента. И тут можно преуменьшить значение нового метода, «прохлопанного» в лаборатории рецензента, – это очень эффективно. Открытая враждебность, кстати, вовсе не обязательна – достаточно не показывать излишнего энтузиазма и быть сдержанным в похвалах.

Заявка на секвенирование ДНК человека, которую подали мы с Марком Адамсом, разумеется, была обречена. Мы получили оценку чуть лучше 1,5. А второго шанса у нас не было: рассмотрение грантов занимает девять месяцев, и даже если бы мы снова подали заявку с революционной идеей, она за время написания заявки и ее рассмотрения потеряла бы свою новизну.

Однако я смог найти другие источники финансирования благодаря моему соглашению с PerkinElmer, и что еще более важно, мои новые спонсоры защищали наш проект от рецензентов-консерваторов. Но когда дело идет о новых идеях, невозможно знать заранее, получится ли из них «хорошая» наука, – до тех пор, пока не будут проведены все эксперименты. Каждому, кто предлагает новаторские методы или теории, приходится за них бороться. Вот и я, продвигая свой метод, не мог гарантировать его успех в случае генома человека, и даже если бы он заработал, в последовательности, возможно, оставалось бы немало пробелов. И все это я открыто признавал.

До меня дошли слухи, что видные деятели – Фрэнсис Коллинз, Эрик Ландер, Боб Уотерстон, Джон Салстон и шефы Салстона в Wellcome Trust – хотели остановить мой проект. Поначалу у них были разногласия – не стоит ли изменить свою собственную стратегию, или все же придерживаться уже существующего плана[146]. Американские партнеры беспокоились, а вдруг конгресс решит, что федеральная программа – это пустая трата денег. Wellcome Trust подтвердил свою приверженность существующему плану. Уотсон сказал, что для продолжения федеральной программы «психологически чрезвычайно важно» заручиться поддержкой НИЗ.

Проблема была в том, что их анализ моей работы происходил не за закрытыми дверями, а в СМИ – в газетах, на телевидении, в ведущих научных журналах. Проходили недели, и битвы становилась все жарче. Поговаривали, что Celera собирается создать «черновой вариант генома», или геномную версию типа «швейцарский сыр», или «примитивную» версию человеческого генома, словно взятую из учебного пособия для студентов CliffsNotes.

В июне того же года в подкомитете конгресса проходили слушания о возможном влиянии моего проекта на финансируемую государством программу. Коллинз приехал в спортивном пиджаке, галстуке и таких же, как у меня, брюках, стремясь подчеркнуть, что похожий стиль одежды символизирует «наше желание во всем быть партнерами»[147]. Мейнард Олсон из Университета Вашингтона жаловался, что знает о моей работе только из прессы. Несмотря на это и на весьма плачевную репутацию его самого – проводимое в его лаборатории исследование искусственных хромосом дрожжей фактически тормозило федеральную программу, – он уверенно предрекал «катастрофические проблемы» в проекте Celera и предостерегал, что в конце концов в моем геноме окажется 100 тысяч «серьезных пробелов»[148]. В своем выступлении я напомнил, что цель секвенирования генома – не победа в конкурентной борьбе, а получение данных для обнаружения и лечения болезней. Об эффективности государственной программы следует судить по тому, как она использует новые начинания, а не по тому, как она с ними конкурирует. Даже мои недоброжелатели согласились, что этот раунд публичного скандала я выиграл, вышел из него с честью, сохранив репутацию.

А самый неприятный эпизод в этой битве произошел в июне 1998 года, во время интервью Фрэнсиса Коллинза научному обозревателю газеты USA Today Тиму Френду.

Их беседа уже закончилась, но Коллинзу неожиданно пришла в голову блестящая идея, как позаковыристее описать работы в Celera. Вначале он заявил, что полученный нами геном будет версией в примитивном стиле журнала Reader’s Digest. Затем он перезвонил Френду и спросил, не может ли тот назвать наш геном «версией журнала Mad » [149]. «Вы уверены?» – спросил Тим Френд. «Да», – заверил его Коллинз. Позже, когда за это выражение на Коллинза обрушились нападки, он отрицал, что когда-либо говорил такое, в традиционной, тысячелетиями применяемой политиками манере.

Больше всего в том публичном осмеянии и унижении нас некоторыми «светилами» геномики меня огорчало возможное деморализующее действие этого на мою команду и спонсоров. Я волновался, как газетную шумиху воспримет Тони Уайт, и он действительно был огорчен вниманием прессы, – но главным образом потому, что это внимание было направлено не на него. Уайт горько обижался, читая вырезки из газет на доске объявлений в Celera, – главная роль в них отводилась Крейгу Вентеру, его неожиданно получившему известность протеже! Пытаясь исправить ситуацию, Уайт специально нанял одного журналиста.

К тому же Уайт продолжал демонстрировать полное непонимание бизнес-плана Celera. Хотя он и согласился на мое обязательное условие – право на публикацию результатов и открытый доступ к данным секвенирования, он неоднократно пытался отступить от принятых договоренностей. Уайт оставался приверженцем «старомодной» стратегии ведения геномного бизнеса: секретность и/или патенты. Исходя из опыта моих взаимоотношений с HGS, я абсолютно точно знал источник мировоззрения Уайта – мантру биотехнологической индустрии, над которой я до сих пор подшучиваю на своих лекциях: «один ген, один белок, один миллиард долларов». Поскольку некоторые гены человека на самом деле стоят миллиарды, многие считали, что есть еще сотни или тысячи генов, которые могут быть столь же прибыльны. Их логика была примитивной и на ив ной. Биотехнологические компании HGS и Incyte лидируют по количеству патентов на гены человека, но в настоящее время цены их акций даже ниже их фактической стоимости, несмотря на обширное «портфолио» генов. Сегодня уже абсолютно ясно: патенты на гены человека не стоят усилий по их получению. Из 23 тысяч генов человека менее дюжины имеют реальную коммерческую стоимость.

С самого начала наши взаимоотношения с Тони Уайтом были очень напряженными, а сейчас только ухудшились. Приезжая в Роквилл, он всегда кричал на сотрудников или откровенно грубил. Но на самом деле терпеть Тони было не так уж трудно, поскольку он не был связан с ежедневными делами корпорации Applera, которой теперь принадлежали Celera и Applied Biosystems. А потом Тони приобрел (за деньги компании) самолет стоимостью 30 миллионов долларов (старый он отдал Ханкапиллеру) и наведывался в Роквилл всего раз в месяц. У меня создалось впечатление, что бо́льшую часть времени он проводил, летая между своими виллами. Тони распорядился, чтобы финансовый директор Applera ежедневно посылал ему отчет о состоянии его, Тони, капитала и по крайней мере раз в неделю звонил ему по телефону, жалуясь на их слишком низкую стоимость. Хотя Celera была начинающей компанией, нацеленной на долгосрочную деятельность, для Тони не имело значения ничего, кроме ежеквартальных отчетов и стоимости акций.

 

 

Гены – это еще не все

Взгляните на мою ДНК и сравните с ДНК других существ, например с ДНК моей собаки или плодовой мушки (дрозофилы), и вы поймете, что многое из казавшегося бессмысленным «мусором» на самом деле содержит прежде нераспознанные элементы «генетической грамматики», делающие язык генов значительно сложнее, чем предполагалось ранее. Эволюция стремится сохранить самые «важные» последовательности ДНК, допуская при этом изменения «неважных» последовательностей, что объясняет генетическое сходство всех видов млекопитающих. В опубликованной в Science статье Стилианос Антонаракис из Медицинского института Женевского университета, Ивен Киркнесс из Института геномных исследований (штат Мэриленд) и другие коллеги сравнили мою ДНК с ДНК собак и отдаленных видов – слонов и кенгуру-валлаби – и обнаружили большие, практически идентичные, участки так называемого «мусора» ДНК. В целом около 3 % последовательностей генома млекопитающих не кодируют белок, тем не менее они очень важны. Эти области, ранее называемые «мусором», получили новое название – «консервативные негенные последовательности» (CNG), – чтобы отличить их от обычных генов. Хотя CNG не очень вариабельны, они могут нести вредные мутации и вызывать многофакторные заболевания. Но от истинного понимания их влияния мы еще очень далеки.

Возможно, они содержат участки кодирования белков, регулирующих включение генов в зависимости от легкости, с которой они связываются с так называемыми транскрипционными факторами (такими, как упомянутый ранее мой «обезьяний» ген), а их в геноме насчитывается около 1800. Возможно, это не идентифицированные экзоны, – то есть неопознанные нами куски генов. Возможно, они помогают поддерживать структурную целостность генома правильной формы, позволяющей клеточному механизму расшифровывать код, или выполняют какую-то пока неизвестную нам функцию. Например, некоторые симптомы синдрома Дауна, определяемого дополнительной копией хромосомы, также могут быть связаны с наличием CNG.

 

Тони часто возвращался к своей любимой теме – могу ли я еще раз объяснить, каким образом собираюсь передать в общий доступ результаты секвенирования генома человека и в тоже время обеспечить Celera возможность зарабатывать деньги? Когда ему самому было неловко задавать этот вопрос, он говорил, что, мол, «старый приятель» его об этом спрашивает. Снова и снова я объяснял, что «сырая» последовательность не имеет большой цены для ученых, биотехнологических и фармацевтических компаний, да и общества в целом. Тони никак не мог понять, что генетический код человека представляет собой «невнятицу» из 3 миллиардов нуклеотидных пар, бесконечных цепей нуклеотидов A, C, G, и T и не имеет никакой ценности для тех, кто не способен идентифицировать небольшие участки, например кодирующие некий белок.

Мы часто упускаем из виду, что Фрэнсис Коллинз и его друзья могут изображать государственный проект «Геном человека» как «чистый», свободный от патентов, поскольку бо́льшая часть получаемых данных передается без всякого понимания их функций в GenBank, открытое хранилище последовательностей ДНК. Истинную же ценность представляет только комплексный анализ генетического кода, позволяющий судить о его назначении. Чтобы решить данную задачу, Celera разрабатывает и устанавливает новые компьютерные программы на самом совершенном в мире компьютере, специально для этого предназначенном. Секвенировав геном человека, мы приступим к секвенированию генома мыши и создадим важнейший инструмент – сравнительную геномику, для дифференцирования действительно важных частей, так называемых эволюционно консервативных участков, общих для обоих геномов, и для определения их функций. Нам предстоит также выявить ошибки в расшифровке генома, однонуклеотидные полиморфизмы SNP (произносится «снипы»), с которыми связаны риски заболеваний или риски побочного действия лекарств, определяющие эффективность лечения.

Так что же именно мы продаем? – так обычно спрашивал Тони после подобного объяснения. Я отвечал, что мы стараемся создать для геномной науки нечто вроде оперативной системы Windows, в шутку заметив, что я вовсе не «Билл Гейтс геномики», как меня нередко называли в прессе. Еще мне нравилось, когда меня называли «Блумбергом от биологии». Мы хотели продавать доступ к полученной информации – «упакованной» и хорошо организованной в обширной, удобной для пользования базе данных, то есть соединить достижения молекулярной биологии с передовыми компьютерными технологиями.

Главный управляющий бизнес-процессами в Celera Питер Баррет из PerkinElmer неплохо разбирался в коммерческой модели базы данных. Он был толковым (имел научную степень по химии), приветливым парнем, сумевшим добиться успеха и удерживаться на плаву в корпорации PerkinElmer более двадцати лет. Но поскольку он любил действовать в одиночку и никому не доверял бразды руководства, он оказался не самым лучшим помощником в деле воплощения идей Celera. С другой стороны, он, вне всякого сомнения, внес огромный вклад в создание бизнеса и помог нам заработать миллионы еще до расшифровки хотя бы одной буквы генетического кода.

Питер был чрезвычайно щепетилен в вопросах патентования. Пока я старался защищать концепцию отказа от патентования результатов секвенирования, если только они не представляют очевидную ценность для развития диагностики и фармацевтики, адвокат компании Celera по патентам Роберт Миллман при поддержке Питера стал жаловаться Уайту за моей спиной. Против моей воли Миллман хотел патентовать абсолютно все наши последовательности, не оставив ни одну из них без юридического оформления, как при «ковровом бомбометании».

Действия Миллмана меня не удивляли: в конце концов, он работал еще с Хазелтайном над документами по блокированию публикации первого генома Haemophilus influenzae в 1995 году. Сейчас ему казалось, что он живет в «патентном раю», или, как он это называл, в «вожделенных мечтах патентного адвоката»[150]. Его представление о великом «захвате» генов поразило воображение главного юридического консультанта Applera Уильяма Соча, подстрекавшего Миллмана «подсидеть» меня, и Миллман принялся говорить Уайту, что я «бросаю деньги на ветер», отказываясь патентовать каждый ген, будь то ген дрозофилы, человека или мыши.

Эта «война» дошла до совета Applera, где мне пришлось отстаивать необходимость патентования только того, что имеет явную ценность. Я боролся за наши принципы – свои и своих сотрудников, поскольку мы обещали сделать геном человека общедоступным. Порой напряжение становилось сильнее, чем я мог вынести. Я уже был немного знаком с Биллом Клинтоном, и меня вдохновлял его пример – я с восхищением наблюдал, как он справлялся с бесконечными затруднительными ситуациями, связанными с взаимоотношениями со СМИ и политическими оппонентами. Скрывая от противников свой страх и волнение, вы можете оказать им гораздо более действенный отпор, чем нанося прямой ответный удар (хотя последний наверняка доставил бы вам огромное удовольствие).

Несмотря на препятствия, боевой дух в Celera был не просто высоким, он был на невероятной высоте. Это отмечали все наши гости – мы понимали, что впереди нас ждут великие свершения. Мы любили устраивать экскурсии по Celera, особенно я, потому что необыкновенно гордился своей командой и тем, что я создал, – это было похоже на настоящий научный Камелот. Новые идеи, новые подходы, новая техника. Каждый знал, что мы поистине творим историю.

У всех моих специалистов была одна и та же главная инструкция: осуществить невозможное. И они знали – если в одной группе произойдет сбой, это отразится на всем процессе. В знак уважения к нашим компьютерщикам, мы решили внедрить настоящую гик-культуру (гик – человек, увлеченный своим делом, например, компьютерами), со всеми сопровождающими ее атрибутами – суперкофеварками для эспрессо, настольным футболом и столами для пинг-понга. Майерс даже назвал группу своих последователей «группой гиков». Каждый понедельник начинался с битвы: гики-компьютерщики в пластиковых шлемах викингов, вооруженные игрушечными ружьями, стреляющими пенопластовыми шариками, а и иногда с надувными булавами, вступали в бой с группой биоинформатиков, выбравших в качестве своего оружия игрушечные же арбалеты. Во время боя из динамиков неслись неистовые звуки вагнеровского «Полета валькирий».

В группу Хэма Смита входили несколько весьма привлекательных молоденьких лаборанток, помогавших собирать библиотеку клонов. Я называл девушек «гарем Хэма». У нас не было Круглого стола, зато внизу было прекрасное кафе с отличной едой, которую готовил великолепный повар Пол. Кафе стало главным местом наших встреч, где почти все ежедневно ели, общались и обсуждали научные проблемы. Когда у меня портилось настроение, мне было достаточно еще раз увидеть, что мы создали, поговорить со своими сотрудниками, и я чувствовал новый прилив сил и вновь был готов к дальнейшей борьбе.

Теперь мы располагались в двух четырехэтажных зданиях с полуподвальными помещениями площадью около 9,5 тысяч м². На первом этаже корпуса № 1 были административные помещения, мой кабинет и кабинеты старших научных сотрудников, второй этаж занимала лаборатория протеомики, а на третьем этаже мы разместили секвенаторы ДНК модели ABI 3700 и организовали небольшие рабочие места для лаборантов. На верхнем этаже проводился анализ ДНК.

Там же начиналось исследование генома, там работал Хэм Смит со своей командой. Он создавал библиотеки последовательностей, используя небулайзер с узким отверстием для распыления раствора ДНК и аккуратно разрезая ДНК хромосом на значительно более мелкие фрагменты. После прохождения через небулайзер, а затем через гели, эти фрагменты ДНК сортировались по размеру. Хэм выделял фрагменты длиной 2 кб (2 тысячи пар оснований), 10 кб и 50 кб. Затем произвольно выбранные фрагменты ДНК встраивали в плазмидные векторы, позволяющие ввести фрагменты ДНК в клетки E. coli, где они размножались миллионы раз. Таким образом мы хотели создать десятки миллионов фрагментов для формирования трех разных библиотек: для фрагментов длиной 2, 10 и 50 кб.

После этого библиотеки передавались в микробиологическую лабораторию, где проводилось высеивание содержимого каждой библиотеки. Бактерии разбавляли до состояния кашицы, которую затем помещали на агар (агар – желеобразное вещество, содержащее основные питательные вещества для роста бактерий) так, чтобы соседние бактериальные затравки находились примерно на расстоянии миллиметра друг от друга. По мере деления клеток бактерий на каждом участке вырастали колонии E. coli, содержавшие фрагменты ДНК. Эти колонии уже на следующий день становились видимыми невооруженным глазом.

Не так давно для получения значительно большего количества ДНК ученые использовали стерильные зубочистки, которыми переносили бактерии из каждой такой колонии в пробирку с питательной средой. В лаборатории, которую мы называли отборочной, мы заменили зубочистки и даже лаборантов большими роботами с прецизионно работающей механической рукой и небольшой ТВ-камерой для наблюдения за колониями. Если бактерии распологались слишком близко, робот не обращал на них внимания, поскольку в таких случаях клоны могли перемешаться. Но если камера ясно видела отдельную колонию, рука робота накалывала ее металлическим зондом и переносила драгоценный груз с ДНК на пластмассовую пластину с 384 лунками, содержащими питательную среду, где бактерии размножались и их количество возрастало в миллионы раз. После каждого накола зонды автоматически очищались, и за один день наши роботы могли обработать более 100 тысяч клонов. За роботами было чрезвычайно интересно наблюдать, и очень скоро они стали излюбленным объектом для съемок приезжавших к нам операторских групп.

Ускорить процесс извлечения ДНК человека из бактерий оказалось одной из самых трудных задач в нашей работе. Сама ДНК человека растет в плазмиде, отделенной от хромосомы бактерии. В типичной молекулярно-биологической лаборатории за один день хороший лаборант может приготовить сотню препаратов плазмид. Чтобы справиться с обработкой огромного потока клонов, поступающих из отборочной лаборатории, нам понадобилась бы тысяча лаборантов.

Глубина лунок на 384-луночных пластинах составляла 3,8 см, но они были очень узкими, что создавало специфические проблемы. Предварительные опыты показали: на дне лунок не хватает кислорода, что ограничивает рост бактерий. Эту проблему наши сотрудники разрешили хитроумным способом, поместив в лунки шарики из нержавеющей стали (размером с дробинку). Затем ряд таких пластин помещали на круглую платформу, медленно вращающуюся вблизи расставленных на разной высоте магнитов. При этом шарики в бактериальной среде то поднимались, то опускались. Перемешивая таким образом содержимое лунок, мы добились равномерного роста бактерий.

А в это время команда наших химиков придумала новый способ, как разрывать клетки бактерий для высвобождения плазмид, содержащих ДНК человека. Помещая 384-луночные пластины в центрифугу, нам удавалось «согнать» остатки бактерий и их ДНК на дно лунок. Плазмиды с их ценным грузом, ДНК человека, при этом оставались в растворе. Затем плазмидную ДНК можно было без труда очистить, экономя более доллара на каждой из 384 лунок наших пластин.

Следующим шагом было присоединение четырех разных красителей к четырем нуклеотидам генетического кода. Мы делали это широко используемым в молекулярной биологии методом амплификации ДНК с помощью ПЦР (полимеразной цепной реакции), применяя который можно копировать ДНК, одновременно добавляя красители. В Cele ra у нас одновременно работало 300 аппаратов ПЦР. Вот теперь мы, наконец-то, были готовы прочитать саму ДНК.

Содержащие прошедшую ПЦР, уже очищенную ДНК 520 наших 384-луночных пластин пропускали через секвенаторы модели 3700, которым предстояло считывать последовательность нуклеотидных пар в генетическом коде. Внутри секвенатора, в тонком капилляре, образец ДНК разделялся на молекулы разного размера. Когда ДНК достигала конца капиллярной трубки, лазер активировал присоединенные красители. Затем с помощью небольшой ТВ-камеры определялся цвет и полученные результаты передавались в компьютер. Это было чрезвычайно важно, так как именно в этот момент последовательность молекулы ДНК преобразовывалась в цифровой код. Четыре химических пары ее нуклеотидов переводились в четыре цвета, а те в свою очередь – в серию единиц и нулей, представляющих четыре генетических нуклеотида. Считывание кажд ого фрагмента ДНК от одного конца до другого позволяло получить от 500 до 600 нуклеотидных пар кода.

Наш процесс заработал. Теперь нам нужно было повторить его 26 миллионов раз и затем заново собрать всю последовательность.

Я понимал, что автоматизация процесса исследования ДНК в сочетании с компьютерным анализом – ключ к пониманию структуры генома человека, уже тогда, когда был разработан метод EST. Еще в 1987 году, когда мы вместе с Джанин Кокейн начали использовать самое первое устройство для секвенирования ДНК, мы с ней стали экспертами по распознаванию изображений в четырехцветных показаниях устройства. Пытаться сопоставить эти изображения в тысячах, не говоря уже о миллионах последовательностей, было, совершенно очевидно, выше человеческих возможностей. Мы всегда стремились максимально использовать новые технологии, и теперь с их помощью пытались проникнуть в область, где еще никто до нас не бывал.

Решить эту сложнейшую вычислительную задачу исследователям Celera предстояло в корпусе № 2. В подвальных помещениях разместилось оборудование для осуществления этой грандиозной задачи: тонны свинцово-кислотных аккумуляторов, обеспечивающих бесперебойное электроснабжение компьютерного комплекса, расположенного этажом выше. Оборудовать компьютерную лабораторию стоило нам более 5 миллионов долларов – и это еще до поставки первых компьютеров. Столько стоила всего лишь установка кондиционеров, противопожарной системы и системы безопасности, – последнее было сделано по настоянию нашей страховой компании. Лаборатория не имела особо прочных стен, которые могли бы противостоять бомбовой атаке «луддитов» (не редкий случай в центрах обработки данных). Для входа в нее пришлось установить пропускную систему с охранниками и устройством сканирования отпечатков ладони PalmPrint.

Некоторые мои сотрудники начали страдать манией преследования, поскольку нам постоянно угрожали – по почте и по телефону. Время от времени наведывались сотрудники ФБР, напомнить, что я могу стать мишенью для Унабомбера[151], и инструктировать сотрудников отдела внешних связей, как проверять корреспонденцию и посылки металлоискателем. (Дома у меня такой тоже был.) Маршалл Петерсон настаивал, чтобы мы срубили ряд ближайших деревьев. «Бешеный пес» боялся, что там могут притаиться снайперы, и мы перевели администрацию на один из верхних этажей. Еще важнее было обеспечение безопасной работы в Интернете, поскольку мы ежедневно сталкивались с атаками хакеров. Для борьбы с ними у нас круглые сутки работала бригада специалистов мирового уровня.

Оснащенный процессором Альфа, мощный компьютер Celera мог производить около 1,2 триллионов операций в секунду, он обладал оперативной памятью объемом 4 гигабайта и еще около 10 терабайтов, или 10 тысяч гига байтов свободного пространства на жестком диске. Команда Петерсона невероятно гордилась своим детищем и особенно скоростью, с которой они его произвели на свет, – это было беспримерным достижением в компьютерном мире того времени.

В 1999 году инженеры Compaq поставили наш компьютер на третье место в мире по возможностям и назвали его крупнейшим компьютером невоенного предназначения. (Сегодня он не вошел бы даже и в первые несколько сотен устройств такого уровня.) Управляющие системы располагались в диспетчерской, оформленной в стиле «Звездных войн». Здесь были гигантские настенные экраны и десятки компьютерных дисплеев меньшего размера, на которых одновременно отслеживались использование процессора, температура воздуха в помещении, наличие персонала на объекте, новости CNN, прогноз погоды, интернет-трафик, работа трехсот секвенаторов ДНК, состояние электросети, объем использования базы данных каждым пользователем, и – исключительно для Тони Уайта – котировка акций Celera.

Поскольку утвержденный советом компании и Тони Уайтом бизнес-план не предусматривал привлечение клиентов в первый год работы, – а в действительности, пока не будет завершено секвенирование генома человека, – единственным показателем, который реально могли оценить наши «хозяева», была стоимость акций. Сначала цена их колебалась в районе 15 долларов за акцию. Это означало, что компания стоит порядка 300 миллионов долларов, что примерно соответствовало сумме денежных вложений. Но поскольку эта цифра упорно стояла на месте, Тони занервничал и стал угрожать продать или закрыть компанию Celera. Никто уже и не вспоминал тот великий день, когда совет директоров PerkinElmer одобрил создание Celera и его члены решили, что смогут сделать нечто стоящее для всего человечества.

Вместе с Питером Барретом мы посетили крупнейшие фармацевтические компании и обнаружили, как и предполагалось, что наиболее дальновидные – с точки зрения будущего геномики – фирмы заинтересовались нашими предложениями. Подписка на нашу базу данных означала необходимость выплачивать от 5 до 9 миллионов долларов в год в течение 5 лет. Компании имели право заниматься разработкой лекарств без роялти Celera (этой уступки мы добились в результате серьезной внутрикорпоративной борьбы с Уайтом). Первой подписавшейся компанией стала Amgen.

Все фармацевтические фирмы беспокоились о соблюдении секретности. Некоторые опасались, что шпионы могут скрываться на деревьях и фотографировать экраны компьютеров в моем офисе. Были также проблемы компьютерной безопасности, возникавшие из самой структуры нашего бизнеса: все компании боялись, что конкуренты, а то и сотрудники Celera, будут использовать наши геномные данные в своих собственных целях. И, конечно, большинство компаний хотели блокировать или ограничивать публикацию данных генома человека, чтобы затруднить конкурентам доступ к последовательностям. Это еще больше подливало масла в огонь и так напряженных отношений между научными и деловыми командами в Celera.

Когда задумывалась наша исследовательская программа, мы предполагали, что в течение многих лет будем основным источником данных о геноме человека. На этом основ ании мы добились права публиковать результаты в Интернете каждые три месяца, несмотря на то, что все – совет директоров PerkinElmer, Тони Уайт, Питер Баррет и фармацевтические компании – были против. Но когда Коллинз и Wellcome Trust объявили, что не будут с нами работать, а вместо этого собираются конкурировать с нами и быстро расшифровать «черновой вариант» генома, меня немедлен но «заблокировали», не дав возможности опубликовать обещанные мной ранее результаты. Учитывая все это, я не стал опротестовывать их решение, поскольку был не прочь подождать и опубликовать сразу весь геном человека в одной фундаментальной статье.

И теперь сторонники государственной программы использовали изменения в плане публикации данных Celera в качестве доказательства, что нам нельзя доверять и у нас бесчестные намерения. Так, Мейнард Олсон заявил: «Совершенно ясно, что Celera с самого начала затевала аферу в духе классического трюка “приманить и заменить”. По этому сценарию стратегия компании заключалась в обещании бесплатного и неограниченного доступа к данным для ослабления государственного проекта, подготавливая тем самым почву для монополии на продажу результатов секвенирования»[152].

В реальности все было намного проще. Чтобы Celera выжила и преуспела, требовались определенные изменения. Самым трудным для меня оказалось сформулировать фармацевтическим фирмам такие условия, которые были бы приемлемы и для меня, и для них: мне нужно было удовлетворить их одержимость секретностью, и тем не менее представить всему миру результаты секвенирования генома. Я старался как можно точнее оценить, когда мы закончим первый анализ наших результатов и подготовим статью в научный журнал. И я согласился не публиковать результаты до их появления в журнале, при этом у нас оставалось право обнародовать любые данные, касающиеся уже известных ученым последовательностей. Одна крупная компания дошла до того, что настаивала на финансовых санкциях в случае публикации каждой кодирующей последовательности (экзона), еще не представленной в общедоступной базе данных.

Наконец все было расставлено по своим местам. В Celera рекой полились деньги, поскольку компании платили миллионы, чтобы увидеть наши данные и результаты анализов. Мои сотрудники могли теперь публиковать статьи и обнародовать результаты. Как это уже случалось в TIGR и HGS в случае применения метода секвенирования EST, чем больше мои конкуренты в государственной программе старались повредить нам, тем больше они способствовали достижению нашей цели. У нас было оборудование, идеи и стратегия. Мы могли смело идти вперед.

 

Глава 13

Вперед, и только вперед

 

Фундаментальные аспекты наследственности оказались, к нашему удивлению, довольно просты, а потому появилась надежда, что, возможно, природа не так уж непознаваема, а ее не раз провозглашаемая самыми разными людьми непостижимость – просто еще одна иллюзия, плод нашего невежества. Это вселяет в нас оптимизм, поскольку, если бы мир был настолько сложным, как уверяют некоторые наши друзья, у биологии не было бы никакого шанса стать точной наукой.

Томас Хант Морган. Физические основы наследственности

 

Многие спрашивали меня, почему из всех живых существ на нашей планете я выбрал дрозофилу; других интересовало, почему я сразу не перешел к расшифровке генома человека. Дело в том, что нам нужна была основа для будущих экспериментов, мы хотели быть уверенными в правильности нашего метода, прежде чем потратить почти 100 миллионов долларов на секвенирование генома человека.

Маленькая дрозофила сыграла огромную роль в развитии биологии, особенно генетики. Род дрозофилы включает разных мушек – уксусных, винных, яблочных, виноградных, а также фруктовых, – всего около 26 сотен видов. Но стоит произнести слово «дрозофила», и любой ученый сразу подумает об одном определенном виде – Drosophila melanogaster. Из-за того что она быстро и легко размножается, эта крошечная мушка служит для биологов-эволюционистов модельным организмом. Они используют ее, чтобы пролить свет на чудо творения – от момента оплодотворения до становления взрослого организма. Благодаря дрозофилам было сделано немало открытий, в том числе обнаружены гомеобокссодержащие гены, регулирующие общее строение всех живых организмов.

Каждый, изучающий генетику, знаком с опытами на дрозофиле, выполненными Томасом Хантом Морганом, отцом американской генетики. В 1910 году он заметил среди обычных красноглазых мушек мутантов мужского пола с белыми глазами. Он скрестил белоглазую мужскую особь с красноглазой женской особью и обнаружил, что их потомство получилось красноглазым: белоглазость оказалась рецессивным признаком, и теперь мы знаем: чтобы у мушек были белые глаза, нужны две копии гена белоглазости, по одному от каждого родителя. Продолжая скрещивать мутантов, Морган обнаружил, что только у мужских особей проявляется признак белых глаз, и сделал вывод, что этот признак связан с половой хромосомой (Y-хромосомой). Морган и его ученики изучали наследуемые признаки у тысяч плодовых мушек. Сегодня эксперименты с дрозофилой ведутся в лабораториях молекулярной биологии всего мира, где это маленькое насекомое изучают более пяти тысяч человек.

Я на собственном опыте понял всю важность дрозофилы, когда использовал библиотеки ее кДНК генов при исследовании адреналиновых рецепторов и обнаружил у мушки их эквивалент – октопаминовые рецепторы. Это открытие указывало на общность эволюционной наследственности нервной системы мушки и человека. Пытаясь разобраться в библиотеках кДНК мозга человека, я путем компьютерного сопоставления генов человека с генами дрозофилы нашел гены со сходными функциями.

Проект секвенирования гена дрозофилы был запущен в 1991 году, когда Джерри Рубин из Калифорнийского университета в Беркли и Аллен Спредлинг из института Карнеги решили, что настало время приняться за эту задачу. В мае 1998 года 25 % секвенирования было уже завершено, и я внес предложение, которое, по словам Рубина, было «слишком хорошим, чтобы от него отказаться». Моя идея была довольно рискованной: тысячам исследователей плодовой мушки из разных стран предстояло пристально изучить каждую букву полученного нами кода, сравнивая ее с высококачественными, эталонными данными самого Джерри, а затем сделать заключение о пригодности моего метода.

Исходный план предполагал завершение секвенирования


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.072 с.