Что такое защищенные элементы — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Что такое защищенные элементы

2021-12-07 26
Что такое защищенные элементы 0.00 из 5.00 0 оценок
Заказать работу

При изучении определений базовых классов вы можете встретить элементы, объявленные как public, private и protected (общие, частные и защищенные). Как вы знаете, производный класс может обращаться к общим элементам базового класса, как будто они определены в производном классе. С другой стороны, производный класс не может обращаться к частным элементам базового класса напрямую. Вместо этого для обращения к таким элементам производный класс должен использовать интерфейсные функции. Защищенные элементы базового класса занимают промежуточное положение между частными и общими. Если элемент является защищенным, объекты производного класса могут обращаться к нему, как будто он является общим. Для оставшейся части вашей программы защищенные элементы являются как бы частными. Единственный способ, с помощью которого ваши программы могут обращаться к защищенным элементам, состоит в использовании интерфейсных функций. Следующее определение класса book использует метку protected, чтобы позволить классам, производным от класса book, обращаться к элементам title, author и pages напрямую, используя оператор точку:

class book

{
public:
book(char *, char *, int);
void show_book(void);
protected:
char title [64];
char author[64];
int pages;
};

Если вы предполагаете, что через некоторое время вам придется породить новые классы из создаваемого сейчас класса, установите, должны ли будущие производные классы напрямую обращаться к определенным элементам создаваемого класса, и объявите такие элементы защищенными, а не частными.

Защищенные элементы обеспечивают доступ и защиту

Как вы уже знаете, программа не может обратиться напрямую к частным элементам класса. Для обращения к частным элементам программа должна использовать интерфейсные функции, которые управляют доступом к этим элементам. Как вы, вероятно, заметили, наследование упрощает программирование в том случае, если производные классы могут обращаться к элементам базового класса с помощью оператора точки. В таких случаях ваши программы могут использовать защищенные элементы класса. Производный класс может обращаться к защищенным элементам базового класса напрямую, используя оператор точку. Однако оставшаяся часть вашей программы может обращаться к защищенным элементам только с помощью интерфейсных функций этого класса. Таким образом, защищенные элементы класса находятся между общими (доступными всей программе) и частными (доступными только самому классу) элементами.

РАЗРЕШЕНИЕ КОНФЛИКТА ИМЕН

Если вы порождаете один класс из другого, возможны ситуации, когда имя элемента класса в производном классе является таким же, как имя элемента в базовом классе. Если возник такой конфликт, C++ всегда использует элементы производного класса внутри функций производного класса. Например, предположим, что классы book и library_card используют элемент price. В случае класса book элемент price соответствует продажной цене книги, например $22.95. В случае класса library'_card price может включать библиотечную скидку, например $18.50. Если в вашем исходном тексте не указано явно (с помощью оператора глобального разрешения), функции класса library_card будут использовать элементы производного класса {library_card). Если же функциям класса library_card необходимо обращаться к элементу price базового класса {book), они должны использовать имя класса book и оператор разрешения, например book::price. Предположим, что функции show_card необходимо вывести обе цены. Тогда она должна использовать следующие операторы:

cout << "Библиотечная цена: $" << price << endl;
cout << "Продажная цена: $" << book::price << endl;

ЧТО ВАМ НЕОБХОДИМО ЗНАТЬ

Из этого урока вы узнали, что наследование в C++ позволяет вам строить /порождать) новый класс из существующего класса. Строя таким способом один класс из другого, вы уменьшаете объем программирования, что, в свою очередь, экономит ваше время. Из урока 27 вы узнаете, что C++ позволяет вам порождать класс из двух или нескольких базовых классов. Использование нескольких базовых классов для порождения класса представляет собой множественное наследование. До изучения урока 27 убедитесь, что освоили следующие основные концепции:

    1. Наследование представляет собой способность производить новый класс из существующего базового класса.
    2. Производный класс — это новый класс, а базовый класс — существующий класс.
    3. Когда вы порождаете один класс из другого (базового класса), производный класс наследует элементы базового класса.
    4. Для порождения класса из базового начинайте определение производного класса ключевым словом class, за которым следует имя класса, двоеточие и имя базового класса, например class dalmatian: dog.
    5. Когда вы порождаете класс из базового класса, производный класс может обращаться к общим элементам базового класса, как будто эти элементы определены внутри самого производного класса. Для доступа к частным данным базового класса производный класс должен использовать интерфейсные функции базового класса.
    6. Внутри конструктора производного класса ваша программа должна вызвать конструктор базового класса, указывая двоеточие, имя конструктора базового класса и соответствующие параметры сразу же после заголовка конструктора производного класса.
    7. Чтобы обеспечить производным классам прямой доступ к определенным элементам базового класса, в то же время защищая эти элементы от оставшейся части программы, C++ обеспечивает защищенные {protected) элементы класса. Производный класс может обращаться к защищенным элементам базового класса, как будто они являются общими. Однако для оставшейся части программы защищенные элементы эквивалентны частным.
    8. Если в производном и базовом классе есть элементы с одинаковым именем, то внутри функций производного класса C++ будет использовать элементы производного класса. Если функциям производного класса необходимо обратиться к элементу базового класса, вы должны использовать оператор глобального разрешения, например base class:: member.

 

40.   Виртуальные функции и полиморфизм

Виртуальные функции

Для примеров будем использовать классы из предыдущей лекции. Следует напомнить, что у нас был класс Person, от которого был унаследован класс Student. Рассмотрим следующий пример:

Student s;
Person &p = s;
s.name(); //Student::name()
p.name(); //Person::name()

В 3-й строке вызовется метод класса Student, т.к. s является объектом этого класса. Однако, в строке 4 вызовется метод name базового класса Person, хотя по логике следовало бы тоже ожидать вызов name() класса Student — ведь p — это ссылка на объект производного класса.

Возможность вызова методов производного класса через ссылку или указатель на базовый класс осуществляется с помощью механизма виртуальных функций. Чтобы при вызове p.name() вызвался метод класса Student, реализуем классы следующим образом:

struct Person
{
virtual string name() const;
};

struct Student: Person
{
string name() const;
};

Перед методом name класса Person мы указали ключевое слово virtual, которое указывает, что метод является виртуальным. Теперь при вызове p.name() произойдет вызов метода класса Student, несмотря на то, что мы его вызываем через ссылку на базовый класс Person. Аналогичная ситуация и с указателями:

Student s;
Person *p = &s;
p->name(); //вызовется Student::name();
Person n;
p = &n;
p->name(); //вызовется Person::name()

Если с некоторого класса в иерархии наследования метод стал виртуальным, то во всех производных от него классах он будет виртуальным, вне зависимости от того, указано ли ключевое слово virtual в классах наследниках.

Механизм виртуальных функций реализует полиморфизм времени выполнения: какой виртуальный метод вызовется будет известно только во время выполнения программы.

В качестве следующего примера можно рассмотреть класс TextFile, от которого наследуются два класса: GZippedTextFile и BZippedTextFile. Базовый класс имеет два метода: name(), возвращающий имя файла, и read(), считывающий данные из файла. В этом случае виртуальным имеет смысл сделать только метод read, т.к. у каждого типа сжатого файла будет свой способ считывания данных:

struct TextFile
{
string name() const;
virtual string read(size_t count);
//...
};

struct GZippedTextFile: TextFile
{
string read(size_t count);
//...
}

struct BZippedTextFile: TextFile
{
string read(size_t count);
//...
}

Перекрытие методов

Рассмотрим класс A, у которого имеется метод f(int), и класс B, унаследованный от A, у которого есть метод f(long):

struct A
{
void f(int);
};
struct B: A
{
void f(long);
};

В следующем коде:

B b;
b.f(1);

произойдет вызов метода f(long) класса B, несмотря на то, что у родительского класса A есть более подходящий метод f(int). Оказывается, что метод f(int) родительского класса A перекрылся. Для того, чтобы в примере вызвался метод f(int), следует добавить строку using A::f; в определении класса B:

struct B: A
{
using A::f;
void f(long);
};

Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.