Генераторы переменного тока пассажирских вагонов. — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Генераторы переменного тока пассажирских вагонов.

2021-11-24 85
Генераторы переменного тока пассажирских вагонов. 0.00 из 5.00 0 оценок
Заказать работу

В системах электроснабжения пассажирских вагонов широко применяют индукторные генераторы переменного тока, основные технические характеристики которых приведены в табл. 13.2. 13.2.

Принцип действия. В отличие от обычного синхронного генератора индукторный генератор не имеет на роторе обмоток и колец со щетками для подвода напряжения. В зависимости от расположения обмотки возбуждения индукторные генераторы подразделяют на машины с осевым и радиальным возбуждением. Генераторы ГСВ-2, -8А, 2ГВ-003 и 2ПВ-001 – это машины с осевым возбуждением. В этих машинах обмотка статора 4, в которой при вращении ротора индуктируется переменная ЭДС, выполняется неподвижной и закладывается в пазы статора (рис. 13.3). Обмотка возбуждения 5 также неподвижна и выполнена в виде двух кольцевых катушек, расположенных за пределами пакета статора. Ротор имеет чередующиеся зубцы 9 и пазы, образующие как бы полюсы машины. Магнитный поток Фв, создаваемый каждой обмоткой возбуждения 5, проходит вдоль оси втулки 8 ротора, расходится в зубцы ротора 9, через воздушный зазор 3 проникает в зубцы статора 2, проходит через станину 1 в осевом направлении, а затем через подшипниковый щит 6 и воздушный зазор 7 снова входит во втулку. Потоки Фв, созданные каждой катушкой обмотки возбуждения 5, направлены так, что в зубцах статора и ротора они имеют одинаковое направление, а в статоре машины и втулке ротора – встречное. При вращении ротора поток, проходящий через каждый зубец статора, будет изменяться, так как магнитное сопротивление этому потоку меняется в зависимости от того, что находится против зубца статора – зубец или паз ротора. В результате этого изменения в катушках обмотки, заложенной в пазах статора, будет индуцироваться ЭДС.


Рис. 13.2. Тяговый агрегат.
1 – выводы обмоток возбуждения ГСН и тягового СГ; 2 – вал; 3 – подшипник; 4 – атмосферный канал; 5 – втулка подшипника; 6 – контактное кольцо; 7 – щетки; 8 – подшипниковый щит; 9 – кожух; 10 – крепление полюсов ГСН; 11– обмотка возбуждения ГСН; 12– выводы статорной обмотки; 13 – сердечник полюса ГСН; 14 – сердечник статора ГСН; 15 – статор ГСН; 16 – кожух; 17– выводы обмотки возбуждения тягового СГ; 18– обмотка возбуждения СГ; 19 – общий барабан ротора; 20 – сердечник полюса СГ; 21 – сердечник статора СГ; 22, 24 – выводы статорной обмотки тягового СГ; 23 – крепление выводов тягового СГ; 25 – кожух; 26 – нажимная шайба.

Таблица 13.2. Технические характеристики индукторных генераторов вагонов.

Параметры

Типы генераторов

2ГВ-003 ГСВ-2, ГСВ-8 ОСС-4435 2ПВ-001
Длительная номинальная мощность, кВА 9,45/0,75* 5,8/2,2* 35 30
Длительная номинальная мощность на выходе выпрямителя, кВт 8 5,5 30 26
Номинальное напряжение, В 45/24* 48/15* 150 150
Номинальный ток, А 121/31* 70/85* 155 135
Диапазон рабочей частоты вращения, об/мин 1000...4000 1000...4000 1000...3400 550...3000
Диапазон изменения частоты тока, Гц 100...400 100...400 200...680 100...400
Масса, кг 260 200 720 -

* В числителе приведены значения параметров для основной обмотки якоря, в знаменателе – для вольтодобавочной обмотки


Рис. 13.3. Принцип работы индукторного генератора переменного тока:
1 – станина, 2 – зубец статора, 3, 7 – воздушные зазоры, 4 – обмотка статора; 5– обмотка возбуждения,
6 – подшипниковый щит, 8 – втулка ротора, 9 – зубец ротора.

Устройство. Генераторы переменного тока 2ГВ-003 и ГСВ представляют собой двенадцатиполюсные машины закрытого исполнения. Корпус 1 генератора (рис. 13.4) имеет лапы 2 или плиту для монтажа генератора под вагоном или на тележке и ребра для воздушного охлаждения машины. Сердечник статора 9 выполнен из листов электротехнической стали, изолированных лаковой пленкой, и запрессован в корпус. Статор имеет 18 пазов, в которые уложены обмотки 5 и 6 (основная трехфазная и вольтодобавочная либо однофазная и трехфазная). Выводы от обмоток подключены к зажимам панели, установленной в клеммной коробке 3. Подшипниковые щиты 4 и 13, имеющие снаружи ребра для охлаждения, крепятся к корпусу болтами. Кольцевые приливы щитов служат для установки двух пар последовательно соединенных катушек параллельной 12 и последовательной 11 обмоток возбуждения. Сердечник 10 ротора собран из листов электротехнической стали, изолированных друг от друга, и имеет шесть зубцов, т. е. 12 полюсов. Он запрессован на втулку 7, укрепленную на валу 8. Втулка 7 ротора является частью магнитопровода генератора и должна иметь достаточно большое сечение. Кольцевые приливы подшипниковых щитов 4 и 13 также имеют развитую поверхность, так как через них проходит магнитный поток возбуждения. Генераторы 2ГВ и ГСВ различных модификаций имеют примерно однотипную конструкцию и отличаются устройством узла подвески генератора к вагону, конструкцией подшипниковых узлов, расположением и количеством обмоток возбуждения, способом крепления ротора. Генератор 2ПВ-001 представляет собой двухмашинный агрегат, состоящий из индукторного генератора и приводного электродвигателя, смонтированных в общем корпусе и имеющих общий вал.
Конструкция генератора подобна генератору 2ГВ-003: ротор имеет восемь зубцов, т.е. 16 полюсов; на статоре расположена трехфазная обмотка, соединенная в звезду.
Приводной электродвигатель – асинхронный с короткозамкнутым ротором. На вагонах-электростанциях установлены синхронные генераторы ГСФ-200 трехфазного тока с явно выраженными полюсами. Генератор имеет следующие номинальные значения параметров: мощность 250 кВА, напряжение 440/230 В, ток 360 А, КПД 0,92, частота тока 50 Гц, частота вращения 1500 об/мин, коэффициент мощности 0,8. В синхронных генераторах ГСФ-200 в отличие от генераторов постоянного тока трехфазная обмотка статора (ее фазы в виде трех катушек АХ, BY, CZ, сдвинутых в пространстве на 120 эл. град.) расположена на статоре, а обмотка возбуждения – на роторе. & Постоянный ток для питания обмотки возбуждения подается из цепи статора через полупроводниковый выпрямитель с помощью контактных колец и щеток. В генераторе осуществляется принцип самовозбуждения, как и в генераторе постоянного тока с параллельным возбуждением. При вращении ротора магнитный поток, создаваемый обмоткой возбуждения, пересекает проводники обмотки статора и при холостом ходе машины индуцирует в каждой фазе обмотки статора переменную ЭДС. Синхронные генераторы вагонов-электростанций приводятся во вращение от дизеля и работают при постоянной частоте вращения. Поэтому напряжение генератора изменяется только в результате изменения его нагрузки.


Рис. 13.4. Устройство генератора 2ГВ-003.
1 – корпус; 2 – лапы; 3 – леммная коробка; 4, 13 – подшипниковые щиты; 5, 6 – обмотки статора;
7 – втулка; сердечник статора; 10 – сердечник ротора; 11 – последовательная обмотка возбуждения;
12 – параллельная обмотка 1 статора; 7 – втулка; 8 – вал; 9 параллельная обмотка возбуждения.

Для поддержания стабильности напряжения синхронных генераторов при изменении нагрузки на вагонах-электростанциях применяют регуляторы напряжения РНГ. Место установки генератора на вагоне определяется в основном его мощностью, габаритными размерами и конструкцией провода. Генераторы вагонов без кондиционирования воздуха имеют малую мощность (до 10 кВт), относительно небольшие габаритные размеры и массу и располагаются под кузовом вагона на его раме или на продольной или поперечной балке тележки. Генераторы вагонов с кондиционированием воздуха имеют мощность 20...32 кВт и значительную массу, поэтому место их установки может оказать существенное влияние на равномерное распределение массы вагона на колесные пары. Как правило, их подвешивают под кузовом вагона в средней его части, укрепляя на хребтовой балке.
Вагонные генераторы работают при значительно изменяющейся нагрузке. Ввиду того, что генераторы расположены под вагонами, их выполняют закрытыми и охлаждают путем обдува потоком встречного воздуха. В некоторых машинах роль вентилятора играют вентиляционные лопасти, смонтированные в торцовой части сердечника якоря. Для увеличения поверхности охлаждения корпуса генераторы снабжают наружными охлаждающими ребрами. В генераторах мощностью 20... 30 кВт, устанавливаемых на вагонах с кондиционированием воздуха, используют дополнительные способы охла Так, на генераторах типа K694L применяют наружный вентилятор с обтекателем, обдувающий внешнюю поверхность корпуса для более интенсивного отвода теплоты. В агрегатах типа DUGG-28B машина охлаждается потоком воздуха, забираемого по воздуховоду из вагона. Воздух для охлаждения генератора предварительно фильтруется в приемных жалюзи. В зимнее время охлаждение генератора воздухом, забираемым из вагона, не допускается. При эксплуатации корпус вагонных генераторов и другие детали подвергаются действию резких изменений температуры. В результате этого в неработающем генераторе температура может достигать значений, при которых из воздуха, находящегося внутри машины, выпадает конденсат (точка росы). Для удаления конденсата в нижней части корпуса машины имеются сливные пробки.


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.