Определение искусственной нейронной сети. Однослойный и многослойный персептроны. — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Определение искусственной нейронной сети. Однослойный и многослойный персептроны.

2021-03-18 64
Определение искусственной нейронной сети. Однослойный и многослойный персептроны. 0.00 из 5.00 0 оценок
Заказать работу

Искусственный нейрон

Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.


Рис. 1.2.

На рис. 1.2 представлена модель, реализующая эту идею. Множество входных сигналов, обозначенных , поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес , и поступает на суммирующий блок, обозначенный . Каждый вес соответствует "силе" одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором .) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть . В векторных обозначениях это может быть компактно записано следующим образом:

Сигнал далее, как правило, преобразуется активационной функцией и дает выходной нейронный сигнал . Активационная функция может быть обычной линейной функцией

где — константа, пороговой функцией

где — некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и предоставляющей нейронной сети большие возможности.

 

Обучение искусственных нейронных сетей

Среди всех интересных свойств искусственных нейронных сетей ни одно не захватывает так воображения, как их способность к обучению. Их обучение до такой степени напоминает процесс интеллектуального развития человеческой личности, что может показаться, будто нами достигнуто глубокое понимание этого процесса. Но, проявляя осторожность, следует сдерживать эйфорию. Возможности обучения искусственных нейронных сетей ограничены, и нужно решить много сложных задач, чтобы определить, находимся ли мы на правильном пути.

Цель обучения

Сеть обучается, чтобы для некоторого множества входов давать желаемое (или, по крайней мере, сообразное с ним) множество выходов. Каждое такое входное (или выходное) множество рассматривается как вектор. Обучение осуществляется путем последовательного предъявления входных векторов с одновременной подстройкой весов в соответствии с определенной процедурой. В процессе обучения веса сети постепенно становятся такими, чтобы каждый входной вектор вырабатывал выходной вектор.

Обучение с учителем

Различают алгоритмы обучения с учителем и без учителя. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором, разность (ошибка) с помощью обратной связи подается в сеть, и веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, ошибки вычисляются и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.

Обучение без учителя

Несмотря на многочисленные прикладные достижения, обучение с учителем критиковалось за свою биологическую неправдоподобность. Трудно вообразить обучающий механизм в мозге, который бы сравнивал желаемые и действительные значения выходов, выполняя коррекцию с помощью обратной связи. Обучение без учителя является намного более правдоподобной моделью обучения для биологической системы. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.

Алгоритмы обучения

Большинство современных алгоритмов обучения выросло из концепций Д.О. Хэбба. Он предложил модель обучения без учителя, в которой синаптическая сила (вес) возрастает, если активированы оба нейрона, источник и приемник. Таким образом, часто используемые пути в сети усиливаются и феномены привычки и обучения через повторение получают объяснение.

В искусственной нейронной сети, использующей обучение по Хэббу, наращивание весов определяется произведением уровней возбуждения передающего и принимающего нейронов. Это можно записать как

где — значение веса от нейрона к нейрону до подстройки, — значение веса от нейрона к нейрону после подстройки, — коэффициент скорости обучения, — выход нейрона и вход нейрона , — выход нейрона .

Сети, использующие обучение по Хэббу, конструктивно развивались, однако за последние 20 лет появились и разрабатывались более эффективные алгоритмы обучения. В частности, были развиты алгоритмы обучения с учителем, приводящие к сетям с более широким диапазоном характеристик обучающих входных образов и большими скоростями обучения, чем использующие простое обучение по Хэббу.

 

Искусственный нейрон

Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.


Рис. 1.2.

На рис. 1.2 представлена модель, реализующая эту идею. Множество входных сигналов, обозначенных , поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес , и поступает на суммирующий блок, обозначенный . Каждый вес соответствует "силе" одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором .) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть . В векторных обозначениях это может быть компактно записано следующим образом:

Сигнал далее, как правило, преобразуется активационной функцией и дает выходной нейронный сигнал . Активационная функция может быть обычной линейной функцией

где — константа, пороговой функцией

где — некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и предоставляющей нейронной сети большие возможности.

 

Определение искусственной нейронной сети. Однослойный и многослойный персептроны.

Искусственная нейронная сеть –множество нейронов соединенных между собой т.о., что: 1) ряд нейронов отмечены, как входные, а некоторые другие как выходные,

2) активационные функции считаются неизменными в работе сети, а веса являются параметрами сети и корректируются.

Односл. персептрон Розенблата     Многослойный персептрон Ujk – выходные сигналы k-го слоя.

 

Классификация ИНС. Задачи, решаемые с помощью нейронных сетей. Нейронные сети классифицируются следующим образом: I. С точки зрения топологии
1.Полносвязные Сеть Хопфильда  

2.Многослойные  а) полносвяные б) частично полносвязные

2. С обратными связями (рекурентные) Сеть Элмана  
Сеть Жордана (обратные связи через слой)
3. Слабосвязные. Сеть Кохонена
II. По типам структур нейронов: 1. Гомогенные. Функции активации всех нейронов одинаковые 2. Гетерогенные. Функции активации всех нейронов разные III. По видам сигналов, которыми оперируют нейронные сети 1.Бинарные(от 0 до 1) 2.Сигналовые- оперируют действительными числами. IV. По методу обучения 1.Обучение с учителем 2.Обучение без учителя 3.Смешанные Классы задач, решаемых нейросетями: 1.Задача распознавания образов (задача классификации) 2.Задача кластеризации. В нейросетевом базисе используется для сжатия данных, анализа данных, поиска закономерностей  3.Аппроксимация функций Постановка задачи: Формируется набор экспериментальных данных . Требуется найти функцию, аппроксимирующую некоторую неизвестную функцию и удовлетворяющую некоторым критериям 4.Предсказание(прогнозирование) Дается временной ряд: Требуется предсказать значение у в момент времени 5.Оптимизация Применяется в задачах, поиск решений в которых очень большая размерность

 

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.